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Lecture 1

Ergodic theory examines the behavior of measure-preserving maps. In this first
lecture, we introduce these maps, and already prove an early basic result of the
field: Poincaré’s recurrence theorem. In the remainder of the chapter, we then
explore several alternative approaches to measure-preserving transformations via
the measure algebra and the Koopman operator.

1.1 Measure-Preserving Transformations and Poin-
caré’s Recurrence Theorem

To start, let us briefly recall some basic measure theoretic concepts and introduce
notation. A measurable space (X,ΣX) consists of a set X together with a σ-
algebra ΣX of subsets of X (which are called measurable). A probability space
(X,ΣX , µX) is given by a measurable space (X,ΣX) and a probability measure
µX : ΣX → [0, 1]. In the following, we write just X for a measurable space (X,ΣX)
or a probability space (X,ΣX , µX) if there is no risk of confusion. We assume that
the reader is familiar with these concepts and knows basic measure and integra-
tion theory. Introductory texts on the subject are, e.g., [Rud87], [Bar95], [Ran02],
[Tao11], and [BBP16].

The following are the “structure preserving maps” between measurable and proba-
bility spaces, respectively.

Definition 1.1.1. (i) A map τ : X → Y between measurable spaces X and Y is
measurable if τ−1(A) ⊆ X is measurable for every measurable subset A ⊆ Y .

(ii) A measurable map τ : X → Y between probability spacesX and Y is measure-
preserving if µX(τ−1(A)) = µY (A) for every measurable subset A ⊆ Y .

It is clear from the definition that the composition of measurable or measure-
preserving maps is again measurable or measure-preserving, respectively.

1



2 LECTURE 1.

Remark 1.1.2. For any measurable map τ : X → Y between measurable spaces
X and Y and any probability measure µX on X, one can define the pushforward
measure τ∗µX on Y via τ∗µX(A) := µX(τ

−1(A)) for every measurable subset A ⊆
Y . Thus, a measurable map τ : X → Y between probability spaces is measure-
preserving precisely when τ∗µX = µY .

Here are a few basic examples of measure-preserving maps. Additional and more
interesting ones can be found in the Exercises below and in the next lectures.

Examples 1.1.3. (i) For any probability space X the identity map idX : X →
X, x 7→ x is measure-preserving.

(ii) Equip a finite set X = {0, . . . , k − 1} for some k ∈ N with the power set
P(X) as its σ-algebra. Recall that if p = (p0, . . . , pk−1) ∈ [0, 1]k is a prob-
ability vector, i.e.,

∑k−1
i=0 pi = 1, then we obtain a probability measure∑k−1

i=0 piδi : P(X) → [0, 1], A 7→
∑

i∈A pi. One can easily check that every
bijection τ : {0, . . . , k − 1} → {0, . . . , k − 1} is then measure-preserving with
respect to the measure defined by the vector (p0, . . . , pk−1) = ( 1

k
, . . . , 1

k
).

(iii) Consider X = [0, 1) with the Borel σ-algebra and the Lebesgue measure, and
for fixed α ∈ [0, 1) define the map τα : [0, 1)→ [0, 1) by τα(x) := x+α mod 1
for x ∈ [0, 1). If A ⊆ [0, 1) is any Borel measurable set, then the preimage

τ−1
α (A) = (τ−1

α (A) ∩ [0, 1− α)) ∪ (τ−1
α (A) ∩ [1− α, 1))

= ((A− α) ∩ [0, 1− α)) ∪ ((A− α + 1) ∩ [1− α, 1))

is measurable since translates of Borel measurable subsets are Borel measur-
able. Moreover, we obtain by translation invariance of the Lebesgue measure,
that

µX(τ
−1
α (A)) = µX((A− α) ∩ [0, 1− α)) + µX((A− α + 1) ∩ [1− α, 1))

= µX(A ∩ [α, 1)) + µX(A ∩ [0, α)) = µX(A).

Thus, τα is a measure-preserving map.

In many instances it is difficult or tedious to directly check with the definition
that a map is indeed measure-preserving. We therefore collect some equivalent
characterizations. Recall here that for a measurable space X a subset E ⊆ ΣX is a
generator of ΣX if ΣX is the smallest σ-algebra over X containing E , and ∩-stable
if A ∩B ∈ E whenever A,B ∈ E .

Proposition 1.1.4. (i) Let X and Y be measurable spaces and E ⊆ ΣY a gener-
ator. For a map τ : X → Y the following assertions are equivalent.

(a) τ is measurable.

(b) τ−1(A) ⊆ X is measurable for every A ∈ E.
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(c) f ◦ τ is measurable for every measurable function f : Y → C.

(ii) For a measurable map τ : X → Y between probability spaces X and Y and a
∩-stable generator E ⊆ ΣY the following assertions are equivalent.

(a) τ is measure-preserving.

(b) µX(τ−1(A)) = µY (A) for every A ∈ E.
(c)

∫
X
f ◦ τ =

∫
Y
f for every measurable function f : Y → [0,∞).

(d) f ◦ τ : X → C is integrable with
∫
X
f ◦ τ =

∫
Y
f for every integrable

function f : Y → C.

We leave the proof (using standard measure theoretic arguments) to the interested
reader. For the equivalence “(a) ⇔ (b)” of part (ii), the Carathéodory uniqueness
theorem from measure theory is needed (see, e.g., [Bil95, Theorem 10.3] for a refer-
ence).

As for many measure theoretic concepts, it is irrelevant in most situations what
a measure-preserving map does on nullsets. It is therefore convenient to identify
measure-preserving maps which agree almost everywhere. Given probability spaces
X and Y , denote the set of all measure-preserving maps τ : X → Y by M (X, Y ).
Write τ1 ∼ τ2 for τ1, τ2 ∈ M (X, Y ) if the equality τ1(x) = τ2(x) holds for almost
every x ∈ X. One can check that ∼ is an equivalence relation on M (X, Y ), and we
write M(X, Y ) := M (X, Y )/∼ for the set of equivalence classes.

Similarly as for Lp-spaces, we still write τ for an element of M(X, Y ) and pick a rep-
resentative in M (X, Y ) (i.e., an actual measure-preserving map X → Y ) whenever
necessary. In particular, using this convention, for probability spaces X, Y and Z
the composition of measure-preserving maps gives us a (well-defined!) map

◦ : M(Y, Z)×M(X, Y )→ M(X,Z), (σ, τ) 7→ σ ◦ τ.

The following concept of invertible measure-preserving transformations is therefore
natural.

Definition 1.1.5. Let X and Y be probability spaces. Then τ ∈ M(X, Y ) is
invertible if there is a (necessarily unique) τ ′ ∈ M(Y,X) such that

τ ′ ◦ τ = idX in M(X,X) and τ ◦ τ ′ = idY in M(Y, Y ).

In this case, τ is an isomorphism of probability spaces. If such an isomorphism
exists, then the probability spaces X and Y are isomorphic.

All the measure-preserving maps in Examples 1.1.3 define isomorphisms of proba-
bility spaces. An example which is not an isomorphism is discussed in Exercise 1.2
below.
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We now discuss one of the early insights of ergodic theory. Given a measure-
preserving map τ : X → X we want to study recurrence properties: Given any
measurable subset A ⊆ X with µX(A) > 0, do we find an element x ∈ A and some
“time” n ∈ N such that τn(x) is again in A?1 Put differently, are there elements in
the intersection A ∩ τ−n(A) for some n ∈ N? The following result shows that we
can indeed find “many” points in A returning to A.

Theorem 1.1.6 (Poincaré’s recurrence theorem). Let τ : X → X be a measure-
preserving map on a probability space X. If A ⊆ X is measurable with µX(A) > 0,
then there is an n ∈ N with µX(A ∩ τ−n(A)) > 0.

Proof. Assume that µX(A ∩ τ−n(A)) = 0 for every n ∈ N. Since τ is measure-
preserving, we then have µX(τ

−m(A) ∩ τ−(n+m)(A)) = 0 for every m ∈ N0 and
n ∈ N. This yields µX(τ−m(A) ∩ τ−k(A)) = 0 for all m, k ∈ N with m ̸= k. Thus,
the sets τ−n(A) for n ∈ N are pairwise disjoint “up to nullsets”, and consequently
we have

µX

(⋃
n∈N

τ−n(A)

)
=

∞∑
n=1

µX(τ
−n(A)) =

∞∑
n=1

µX(A) =∞,

a contradiction.

Studying different notions of recurrence for measure-preserving transformations will
be one focus of this course. One of the deeper results of ergodic theory is Fursten-
berg’s multiple recurrence theorem telling that we can return to the set A after
finitely many multiples n, 2n, 3n, . . . , kn of some “time” n ∈ N for each k ∈ N:

Theorem 1.1.7 (Furstenberg’s multiple recurrence theorem). Let τ : X → X be
a measure-preserving map on a probability space X. If A ⊆ X is measurable with
µX(A) > 0 and k ∈ N, then there is n ∈ N with µX(A∩τ−n(A)∩· · ·∩τ−kn(A)) > 0.

This result is of particular interest due to its consequences in additive combina-
torics. It implies a celebrated theorem on the existence of arithmetic progressions
in “asymptotically large” sets of natural numbers. Here we write |A| for the number
of elements of a finite set A.

Theorem 1.1.8 (Szemerédi). Let A ⊆ N with lim supN→∞
|A∩{1,...,N}|

N
> 0. For

every k ∈ N there is a starting number a ∈ N and a distance d ∈ N such that
a, a+ d, . . . , a+ kd ∈ A.

This fruitful connection between combinatorial number theory and ergodic theory,
known as Furstenberg’s correspondence principle, will be discussed in Lecture 4.
However, showing Theorem 1.1.7 (and related results) requires a substantial amount

1Here and in the following, N is the set of all integers n ≥ 1, while N0 = N ∪ {0}.
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of work. We return to it in a later lecture once we have developed the necessary
structure theory for measure-preserving systems.

1.2 Measure Algebras and Their Homomorphisms
While measure-preserving transformations are defined as concrete maps τ : X → X
on probability spaces, all we actually need to formulate and prove Poincaré recur-
rence is the induced transformation

ΣX → ΣX , A 7→ τ−1(A)

of measurable sets. As we will see, ergodic structure theory also does not rely on the
underlying map directly, but rather on the induced transformations of measurable
subsets and functions. We can therefore “forget” about the concrete map on X
altogether, and instead consider transformations on the level of measurable sets. As
we can also ignore what happens on nullsets, this leads to studying transformations
of so-called “measure algebras”.

To make this precise, recall that for sets A and B the set A∆B := (A \ B) ∪ (B \
A) is their symmetric difference. For a probability space X we then say that
measurable sets A,B ⊆ X agree up to null-sets if µX(A∆B) = 0, and write
A ∼ B in this case. One can easily check that ∼ defines an equivalence relation on
the σ-algebra ΣX .

Definition 1.2.1. For a probability space X the set

Σ(X) := ΣX/∼ = {[A] | A ∈ ΣX}

is called the measure algebra of X.

Remark 1.2.2. One of the advantages of Σ(X) is that we can make sense of “un-
countable unions”, see Exercises 1.4 and 1.6 for this and further properties.

Once again it is convenient to still denote the equivalence classes in Σ(X) by the
letters A,B,C, . . . and pick an identically denoted representative in ΣX whenever
necessary. With this convention, we can form A ∩ B,A ∪ B,A \ B ∈ Σ(X) for
A,B ∈ Σ(X), and define a map

Σ(X)→ [0, 1], A 7→ µX(A).

Of course, one has to check that these constructions do not depend on nullsets, and
hence are independent of the chosen representative. By a slight abuse of notation,
we also write ∅ and X for the elements of Σ(X) defined by the empty set and the
entire space, respectively. Now if τ : X → Y is a measure-preserving map between
probability spaces, then, since pre-images of nullsets are again nullsets, τ gives rise
to a map between the respective measure algebras:
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Definition 1.2.3. Let τ : X → Y be a measure-preserving map between probability
spaces. Then we call

τ ∗ : Σ(Y )→ Σ(X), A 7→ τ−1(A)

the pullback (modulo null sets) of τ .

Remark 1.2.4. Note that pullbacks are compatible with compositions: If τ : X →
Y and σ : Y → Z are measure-preserving maps between probability spaces, then
(σ ◦ τ)∗ = τ ∗ ◦ σ∗.

The pullback of a measure-preserving map evidently preserves the algebraic opera-
tions of union and intersection, and the measure.

Proposition and Definition 1.2.5. For a measure-preserving map τ : X → Y
between probability spaces the map T = τ ∗ : Σ(Y ) → Σ(X) is a measure algebra
homomorphism, i.e., it satisfies

(i) T (A ∪B) = T (A) ∪ T (B) for all A,B ∈ Σ(Y ),

(ii) T (A ∩B) = T (A) ∩ T (B) for all A,B ∈ Σ(Y ),

(iii) µX(T (A)) = µY (A) for all A ∈ Σ(Y ).2

In the following, given probability spaces X and Y , write M(Σ(Y ),Σ(X)) for the
set of measure algebra homomorphisms T : Σ(Y )→ Σ(X). We list some important
properties. It is Exercise 1.5 to prove these.

Lemma 1.2.6. Let X and Y be probability spaces and T : Σ(Y )→ Σ(X) a measure
algebra homomorphism. Then the following statements hold.

(i) T (∅) = ∅ and T (Y ) = X.

(ii) T (A \B) = T (A) \ T (B) for all A,B ∈ Σ(Y ).

(iii) T (A∆B) = T (A)∆T (B) for all A,B ∈ Σ(Y ).

(iv) T
(⋃

n∈NAn

)
=
⋃
n∈N T (An) for every sequence (An)n∈N in Σ(Y ).

(v) T is injective.

(vi) If T is surjective, then T−1 : Σ(X) → Σ(Y ) is also a measure algebra homo-
morphism.

2As observed by the local group in Ljubljana, part (ii) can actually be inferred from (i) and (iii)
as follows. Note first that (iii) implies T (Y ) = X. By (i) we therefore obtain X = T (A)∪T (Y \A),
which yields µX((X \ T (A)) \ T (Y \A)) = 0. Since

µX(X \ T (A)) = 1− µX(T (A)) = 1− µY (A) = µY (Y \A) = µX(T (Y \A)),

this already implies X \ T (A) = T (Y \ A). Combined with (i) and De Morgan’s laws this yields
(ii).
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Are there any examples of measure algebra homomorphisms T : Σ(Y ) → Σ(X)
other than pullbacks of measure-preserving transformations τ : X → Y ? In general,
this can be the case (see [JT23b, Section 5]). Moreover, two distinct elements
σ, τ ∈ M(X, Y ) can induce the same pullback between the corresponding measure
algebras, see Exercise 1.7 below. However, for certain “nice” probability spaces such
behavior does not occur. Recall that a metric space (X, dX) is separable if there is a
countable subset of X which is dense in X, and complete if every Cauchy sequence
in X converges. Recall also that the Borel σ-algebra B(X) of any topological space
is the smallest σ-algebra over X containing all open sets. By equipping a separable
and complete metric space (X, dX) with B(X) we obtain a measurable space called
a standard Borel space. Most examples of probability spaces we will encounter
in this course are given by a probability measure on such a standard Borel space.
The following concept allows even some more flexibility.

Definition 1.2.7. A probability spaceX is a Lebesgue space if there is a separable
and complete metric space (Y, dY ) and a probability measure µY : B(Y )→ [0, 1] such
that X is isomorphic to (Y,B(Y ), µY ) (in the sense of Definition 1.1.5).

For Lebesgue spaces the following result establishes a one-to-one correspondence
between (equivalence classes of) measure-preserving maps and measure algebra ho-
momorphisms between the corresponding measure algebras.

Theorem 1.2.8. For every probability space X and every Lebesgue space Y the map
M(X, Y )→ M(Σ(Y ),Σ(X)), τ 7→ τ ∗ is a bijection.

We do not show the result in the main part of the course (as it is not crucial for what
follows), but a proof is included as a supplement at the end of this lecture.

1.3 Koopman’s Approach

We now take yet another perspective on measure-preserving transformations using
functional analysis.3 Observe that for any measure-preserving map τ : X → Y
between probability spaces and any square-integrable function f : Y → C we obtain
from Proposition 1.1.4 that the composition f ◦τ is again square-integrable with the
same L2-norm. Since for functions f1, f2 : Y → C agreeing almost everywhere, the
compositions f1 ◦τ and f2 ◦τ also agree almost everywhere, we obtain a well-defined
map on the level of L2-spaces:

Definition 1.3.1. Let τ : X → Y be a measure-preserving map between probability

3While we assume the reader to be familiar with basic measure and integration theory, we
briefly recall all necessary functional analytic notions and results for the course in the appendix.
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spaces X and Y . The map

Uτ : L
2(Y )→ L2(X), f 7→ f ◦ τ

is called the Koopman operator induced by τ .

Koopman operators are bounded linear operators, but have important additional
properties.

Proposition and Definition 1.3.2. Let τ : X → Y be a measure-preserving map
between probability spaces. Then U = Uτ : L

2(Y ) → L2(X) is a Markov embed-
ding, i.e.,

(i) U is a linear isometry,

(ii) |Uf | = U |f | for all f ∈ L2(Y ), and

(iii) U1 = 1.

Here, 1 denotes the (equivalence class) of the constant one-function, and, as usual,
the absolute value of functions is defined pointwise. The verification of these prop-
erties is straightforward from the definitions, and is left to the reader.

Markov embeddings (even when not given as Koopman operators) have a number of
useful properties, which we list below. Again all operations on functions (e.g., real
and imaginary parts, suprema and infima, etc.) here are defined pointwise.

Lemma 1.3.3. For probability spaces X and Y and a Markov embedding U : L2(Y )→
L2(X) the following assertions hold.

(i) U(L2(Y, [0,∞))) ⊆ L2(X, [0,∞)).

(ii) U(L2(Y,R)) ⊆ L2(X,R).
(iii) U sup(f, g) = sup(Uf, Ug) and U inf(f, g) = inf(Uf, Ug) for f, g ∈ L2(Y,R).
(iv) Uf+ = (Uf)+ and Uf− = (Uf)− for all f ∈ L2(Y,R).
(v) U(Re f) = ReUf and U(Im f) = ImUf for all f ∈ L2(Y ).

(vi) Uf = Uf for all f ∈ L2(Y ).

(vii)
∫
X
Uf =

∫
Y
f for every f ∈ L2(Y ).

(viii) U(L∞(Y )) ⊆ L∞(X) and ∥Uf∥∞ = ∥f∥∞ for all f ∈ L∞(Y ).

(ix) U is injective.

(x) If U is surjective, then U−1 : L2(X)→ L2(Y ) is also a Markov embedding.

Proof. For part (i) note that if f ∈ L2(Y, [0,∞)), then f = |f |, hence Uf = U |f | =
|Uf | ∈ L2(X, [0,∞)). Part (ii) is a direct consequence of (i) since every f ∈ L2(Y,R)
can be written as f = f+ − f−, hence as a difference of elements in L2(Y, [0,∞)).
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For (iii) notice that sup(f, g) = f+g+|f−g|
2

for f, g ∈ L2(Y,R). Thus,

U sup(f, g) = U

(
f + g + |f − g|

2

)
=
Uf + Ug + |Uf − Ug|

2
= sup(Uf, Ug).

But then also U inf(f, g) = U(− sup(−f,−g)) = − sup(−Uf,−Ug) = inf(Uf, Ug).
Part (iv) is a special case of (iii). Part (v) follows from linearity of U and part (ii),
and (vi) then follows from (v).

We now show (vii). Since U is an isometry on a Hilbert space, it respects inner
products. Thus∫

X

Uf = (Uf |1) = (Uf |U1) = (f |1) =
∫
Y

f for f ∈ L2(Y ).

To check (viii), let f ∈ L∞(Y ) and take c ≥ 0. Then |f | ≤ c1 almost everywhere
precisely when (|f | − c1)+ = 0 in L2(X), i.e., ∥(|f | − c1)+∥2 = 0. But

∥(|f | − c1)+∥2 = ∥U(|f | − c1)+∥2 = ∥(|Uf | − c1)+∥2

by the definition of Markov embeddings and part (iv). This shows that the inequality
|f | ≤ c1 holds almost everywhere precisely when |Uf | ≤ c1 almost everywhere. This
shows (viii). Finally, part (ix) follows from the fact that U is isometric, while (x) is
straightforward to see.

The next result shows that, just as every measure-preserving map, each measure
algebra homomorphism also induces a “Koopman operator”.

Proposition 1.3.4. Let X and Y be probability spaces. If T : Σ(Y ) → Σ(X)
is a measure algebra homomorphism, then there is a unique Markov embedding
UT : L

2(Y )→ L2(X) with UT1A = 1T (A) for all A ∈ Σ(Y ).

Remark 1.3.5. Note that the uniqueness property immediately implies a compati-
bility with compositions: For probability spaces X, Y , and Z, and measure algebra
homomorphisms S : Σ(Z)→ Σ(Y ) and T : Σ(Y )→ Σ(X) we have UT◦S = UT ◦ US.
We need the following basic observation from measure theory (see, e.g., [BBP16,
Proposition 9.24] for a proof).

Lemma 1.3.6. Let X be a probability space. Then the linear hull lin{1A | A ∈
Σ(X)} is dense in Lp(X) for every p ∈ [1,∞].

Proof of Proposition 1.3.4. First note that uniqueness is clear: Since the (equiv-
alence classes of) characteristic functions span a dense subspace of L2(Y ), any
bounded linear operator U : L2(Y ) → L2(X) is uniquely determined by its values
U1A for A ∈ Σ(Y ). For existence write EY and EX for the spaces of (equivalence
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classes) of simple functions in L2(Y ) and L2(X), respectively. If A1, . . . , Ak ∈ Σ(Y )
and a1, . . . , ak ∈ C, we obtain∥∥∥∥ k∑

i=1

ai1T (Ai)

∥∥∥∥2
2

=
k∑
i=1

k∑
j=1

aiaj

∫
X

1T (Ai) · 1T (Aj) =
k∑
i=1

k∑
j=1

aiajµX(T (Ai) ∩ T (Aj))

=
k∑
i=1

k∑
j=1

aiajµY (Ai ∩ Aj) =
∥∥∥∥ k∑
i=1

ai1Ai

∥∥∥∥2
2

.

A moment’s thought reveals that we now obtain a (well-defined!) linear map
UT : EY → EX ,

∑k
i=1 ai1Ai

→
∑k

i=1 ai1T (Ai) which is isometric with respect to the
L2-norms. Since EY is dense in L2(Y ) by Lemma 1.3.6, we obtain from basic func-
tional analysis (see Proposition A.1.1) that UT uniquely extends to a linear isometry
UT : L

2(Y )→ L2(X). To check that UT is a Markov embedding, first take a simple
function f =

∑k
i=1 ai1Ai

∈ EY . We can assume that µY (Ai ∩ Aj) = 0 and hence
also µX(T (Ai) ∩ T (Aj)) = 0 for i, j ∈ {1, . . . , k} with i ̸= j. Then

UT |f | = UT

k∑
i=1

|ai|1Ai
=

k∑
i=1

|ai|1T (Ai) =

∣∣∣∣∣
k∑
i=1

ai1T (Ai)

∣∣∣∣∣ = |UTf |.
For general f ∈ L2(Y ) we find a sequence (fn)n∈N in EY with limn→∞ fn = f
in L2(Y ). Then also limn→∞ UTfn = UTf since UT is continuous. Since ||fn| −
|f || ≤ |fn − f | for every n ∈ N, also limn→∞ |fn| = |f | in L2(Y ), and, by the same
argument, limn→∞ |UTfn| = |UTf |. We conclude that UT |f | = limn→∞ UT |fn| =
limn→∞ |UTfn| = |UTf |. Finally, UT1 = UT1Y = 1T (Y ) = 1X = 1 by Lemma 1.2.6
(i). Thus, UT is a Markov embedding.

It turns out that measure algebra homomorphisms and Markov embeddings are
equivalent concepts. Given probability spaces X and Y , write M(L2(Y ),L2(X)) for
the set of Markov embeddings U : L2(Y ) → L2(X). Then the following correspon-
dence holds.

Theorem 1.3.7. For all probability spaces X and Y the map M(Σ(Y ),Σ(X)) →
M(L2(Y ),L2(X)), T 7→ UT is a bijection.

Proof. To see that the map is injective, observe that if T1, T2 : Σ(Y ) → Σ(X) are
two measure algebra homomorphisms with UT1 = UT2 , then

1T1(A) = UT11A = UT21A = 1T2(A)

and hence T1(A) = T2(A) for every A ∈ Σ(Y ).

We now show that the map is surjective. Let U : L2(Y ) → L2(X) be a Markov
embedding. If A ∈ Σ(Y ), then, by Lemma 1.3.3 (iii), the element f := U1A ∈ L2(X)
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satisfies

inf(f,1− f) = inf(U1A, U1− U1A) = U inf(1A,1− 1A) = U0 = 0.

Thus, min(f(x), 1 − f(x)) = 0 for almost every x ∈ X. This implies f = 1B for a
unique B ∈ Σ(X) and we set T (A) := B. For A1, A2 ∈ Σ(Y ) we then have

1T (A1∩A2) = U(1A1∩A2) = U inf(1A1 ,1A2) = inf(U1A1 , U1A2) = inf(1T (A1),1T (A2))

= 1T (A1)∩T (A2)

and hence T (A1 ∩ A2) = T (A1) ∩ T (A2). Similarly, T (A1 ∪ A2) = T (A1) ∪ T (A2).
Finally, for A ∈ Σ(Y ) we have

µX(T (A)) = ∥1T (A)∥2 = ∥U1A∥2 = ∥1A∥ = µY (A).

Therefore T is a measure algebra homomorphism. Since U and UT agree on every
1A for A ∈ Σ(X), we obtain U = UT again from the fact that U and UT are bounded
linear operators and Lemma 1.3.6.

Corollary 1.3.8. Let X and Y be probability spaces. Then every Markov embed-
ding U : L2(Y )→ L2(X) restricts to an algebra homomorphism U |L∞(Y ) : L

∞(Y )→
L∞(X), i.e., U(f · g) = Uf · Ug for all f, g ∈ L∞(Y ).

Proof. By Theorem 1.3.7 we may assume that U = UT for a measure algebra ho-
momorphism T : Σ(Y ) → Σ(X). By Lemma 1.3.3 (viii), UT restricts to a linear
isometry UT |L∞(Y ) : L

∞(Y )→ L∞(X). If f = 1A and g = 1B for A,B ∈ Σ(Y ), then

UT (f · g) = UT1A∩B = 1T (A∩B) = 1T (A)∩T (B) = 1T (A) · 1T (B) = UTf · UTg.

By bilinearity of multiplication, UT (f · g) = UTf · UTg for (equivalence classes
of) simple functions f, g ∈ L∞(Y ). Finally, we can approximate general f, g ∈
L∞(Y ) with sequences (fn)n∈N and (gn)n∈N of simple functions to obtain UT (f ·g) =
limn→∞ UT (fn · gn) = limn→∞ UT (fn) ·UT (gn) = UTf ·UTg with the limit now taken
with respect to the L∞-norm (since multiplication of functions is continuous with
respect to this norm).

Corollary 1.3.9. Let X be a probability space and Y a Lebesgue space. Then the
map M(X, Y )→ M(L2(Y ),L2(X)), τ 7→ Uτ is a bijection.

Proof. One can readily check that the map is the composition of the bijections of
Theorems 1.2.8 and 1.3.7.

To conclude the lecture, let us emphasize once more that we have (at least for
Lebesgue spaces) three different, but equivalent approaches to measure-preserving
transformations between probability spaces X and Y :
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(i) measure-preserving maps τ : X → Y ,

(ii) measure algebra homomorphisms T : Σ(Y )→ Σ(X), and

(iii) Markov embeddings U : L2(Y )→ L2(X).

To pass from (i) to (ii) we take the pullback. The transition from (ii) to (iii) is
achieved by extending the induced map of (equivalence classes of) characteristic
functions to a linear isometry between the L2-spaces.
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1.4 Supplement: Realization of Homomorphisms

We now provide the promised proof of Theorem 1.2.8. First recall its content.

Theorem. For every probability space X and every Lebesgue space Y the map
M(X, Y )→ M(Σ(Y ),Σ(X)), τ 7→ τ ∗ is a bijection.

Proof. For a measure algebra homomorphism T : Σ(Y ) → Σ(X) we have to find a
unique τ ∈ M(X, Y ) with T = τ ∗. We first improve the situation: By assumption
we find a separable and complete metric space (Z, dZ), a Borel probability measure
µZ : B(Z) → [0, 1] and an isomorphism ϑ ∈ M(Y, Z). Let ϑ−1 ∈ M(Z, Y ) be its
inverse. Then S := T ◦ϑ∗ : Σ(Z)→ Σ(X) is again a measure algebra homomorphism.
If we find a unique σ ∈ M(X,Z) with σ∗ = S, then one can check that ϑ−1 ◦ σ ∈
M(Y,X) is the unique τ ∈ M(X, Y ) with τ ∗ = T .

Now pick a countable dense subset {zk | k ∈ N} of Z. Observe then that, for fixed
n ∈ N, the open balls B(zk, 1/n) := {z ∈ Z | dZ(zk, z) < 1/n} for k ∈ N cover the
entire space Z.

Uniqueness: Assume that σ1, σ2 : X → Z are measure-preserving maps with (σ1)
∗ =

(σ2)
∗ = S. We have to show that the set M := {x ∈ X | σ1(x) ̸= σ2(x)} is a nullset.

Since for any A ∈ ΣY the symmetric difference of (σ1)
−1(A) and (σ2)

−1(A) is a
nullset, it suffices to show the identity

M =
⋃
n∈N

⋃
k∈N

(σ1)
−1(B(zk, 1/n)) ∩ (X \ (σ2)−1(B(zk, 1/n)))

as this implies that M is a countable union of nullsets, hence a nullset itself.

The inclusion “⊇” is clear. Conversely, if x ∈ X with σ1(x) ̸= σ2(x), then there is
some n ∈ N with dZ(σ1(x), σ2(x)) ≥ 2/n. Choose k ∈ N with σ1(x) ∈ B(zk, 1/n). By
the triangle inequality, σ2(x) cannot also be an element of B(zk, 1/n). This shows
x ∈ (σ1)

−1(B(zk, 1/n)) ∩ (X \ (σ2)−1(B(zk, 1/n))).

Existence: The proof of existence of σ : X → Z with σ∗ = S requires several steps.

Step 1: Construct suitable measurable partitions of X and Z. Fix n ∈ N. We
“disjointify” the cover of open balls from above by setting An1 := B(z1, 1/n) and
recursively Ank := B(zk, 1/n) \

⋃k−1
j=1 A

n
j for k ≥ 2. The sets Ank for k ∈ N then form a

measurable partition of Z.

For k ∈ N we choose a measurable subset Bn
k ⊆ X with S(Ank) = Bn

k in Σ(X). Since
S is a measure algebra homomorphism, we obtain

µX(B
n
k ∩Bn

l ) = µX(S(A
n
k ∩ Anl )) = µZ(A

n
k ∩ Anl ) = 0
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for k ̸= l. Moreover, by Lemma 1.2.6 (iv) we have

µX

(⋃
k∈N

Bn
k

)
= µZ

(⋃
k∈N

Ank

)
= µZ(Z) = 1.

A moment’s thought reveals that by replacing Bn
1 with (Bn

1 )
′ := Bn

1 ∪X \
⋃
l∈NB

n
l

and recursively Bn
k with (Bn

k )
′ := Bn

k \
⋃k−1
l=1 (B

n
l )

′ for k ≥ 2, we may assume that
the sets Bn

k for k ∈ N form a measurable partition of X.

Step 2: Construct approximating sequences of measurable maps. We claim that there
are measurable maps ϱn : Z → Z and σn : X → Z for n ∈ N with the following two
properties.

(i) S(ϱ−1
n (A)) = (σn)

−1(A) in Σ(X) for every measurable A ⊆ Z and n ∈ N.

(ii) limn→∞ ϱn(z) = z for every z ∈ Z.

To construct these, notice that for every z ∈ Z there is precisely one k ∈ N with
z ∈ Ank . We then set ϱn(z) := zk. Similarly, for every x ∈ X we find exactly one
k ∈ N with x ∈ Bn

k and we define σn(x) := zk. As the preimages of any subset of Z
with respect to ϱn and σn are countable unions of the measurable sets Ank and Bn

k ,
respectively, both maps are measurable. To check property (i) observe that for any
measurable subset A ⊆ Z and n ∈ N the identities

ϱ−1
n (A) =

⋃
k∈N
zk∈A

Ank and σ−1
n (A) =

⋃
k∈N
zk∈A

Bn
k

hold. Thus,

S(ϱ−1
n (A)) = S

( ⋃
k∈N
zk∈A

Ank

)
=
⋃
k∈N
zk∈A

Bn
k = (σn)

−1(A)

in Σ(X) by Lemma 1.2.6 (iv). For property (ii) note that for z ∈ Z and n ∈ N we
have z ∈ B(ϱn(z), 1/n) by definition of the map ϱn and the sets Ank for k ∈ N. But
this implies limn→∞ ϱn(z) = z.

Step 3: Construct the measure-preserving map σ. We show that for almost every
x ∈ X the sequence (σn(x))n∈N is a Cauchy sequence in Z. First fix n,m ∈ N. Then
the sets Bn

k ∩ Bm
l for k, l ∈ N form a measurable partition of X. If k, l ∈ N with

µX(B
n
k ∩ Bm

l ) > 0, then µY (A
n
k ∩ Aml ) > 0, and hence there is some z ∈ Ank ∩ Aml .

For every x ∈ Bn
k ∩Bm

l we therefore obtain

dZ(σn(x), σm(x)) = dZ(zk, zl) ≤ dZ(zk, z) + dZ(z, zl) <
1

n
+

1

m
.

by definition of the sets Ank and Aml . Thus, dZ(σn(x), σm(x)) < 1
n
+ 1

m
for almost

every x ∈ X. Since the set N× N is countable, we even find a nullset N ⊆ X such
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that d(σn(x), σm(x)) ≤ 1
n
+ 1

m
holds for all x ∈ X \ N and all n,m ∈ N. Thus,

(σn(x))n∈N is a Cauchy sequence for all x ∈ X \N .

Redefining the sequence σn on a nullset (setting it to some fixed, arbitrary value), we
still have property (i) above but can achieve that (σn(x))n∈N is a Cauchy sequence
for every x ∈ X. Since the metric space (Z, dZ) is complete, the limit σ(x) :=
limn→∞ σn(x) exists for all x ∈ X. Moreover, σ : X → Z is measurable as the
pointwise limit of a sequence of measurable maps (see, e.g., [Kal97, Lemma 1.10]).
For each measurable A ⊆ Z we obtain by property (i), Lemma 1.2.6 (iii), and
Exercise 1.4 that

µX(S(A)∆σ−1(A)) ≤ µX(S(A)∆S(ϱn(A))) + µX(S(ϱn(A))∆σ
−1(A))

= µZ(A∆ ϱ−1
n (A)) + µX(σ

−1
n (A)∆σ−1(A)).

Since limn→∞ ϱn(z) = z for every z ∈ Z by property (ii) above, and limn→∞ σn(x) =
σ(x) for every x ∈ X by definition of σ, we obtain from Lebesgue’s theorem,

lim
n→∞

µZ(A∆ ϱ−1
n (A)) = lim

n→∞
∥1A − 1A ◦ ϱn∥1 = 0, and

lim
n→∞

µX(σ
−1
n (A)∆σ−1(A))) = lim

n→∞
∥1A ◦ σn − 1A ◦ σ∥1 = 0.

Thus, S(A) = σ−1(A) in Σ(X). In particular, µX(σ−1(A)) = µX(S(A)) = µZ(A).
Therefore, σ : X → Z is measure-preserving with σ∗ = S.
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1.5 Comments and Further Reading
What is now known as Poincaré’s recurrence theorem has its roots in the work
[Poi90] of the French mathematician and physicist Henri Poincaré on “the three
body problem” and predates modern ergodic theory (and abstract measure theory).
For more information, also on the physical context, see, e.g., [EW11, Section 2.2],
[EFHN15, Section 6.2], and [VO16, Chapter 1].

The abstract approach to measure-preserving transformations, formalized using
measure algebras, has been implicitly present in the literature; see, e.g., [Fur14,
Chapter 5] and [Gla03, Chapter 2]. This “point-free” framework of ergodic the-
ory has been systematically developed in a series of papers by the first author and
Terence Tao, see [JT23a, JT23b, JT22].

Taking pullbacks of maps on the level of sets or functions is a common procedure in
many mathematical areas. Bernhard Koopman, a coauthor of John von Neumann,
introduced his operator in [Koo31] and paved the way for applying functional anal-
ysis to study measure-preserving maps. This operator theoretic approach to ergodic
theory is thoroughly discussed in the book manuscript [DNP87], and the monograph
[EFHN15], which is based on the 12th edition of the ISem from 2008/09 [EFHN09].
In particular, we refer to [EFHN15, Chapter 13] for more information on Markov
embeddings.

An early version of Theorem 1.2.8 on the connection between measure-preserving
maps and measure algebra homomorphisms was already proven by von Neumann in
[vN32a], see also [EFHN15, Sections 6.1 and 7.3]. Our proof of Theorem 1.2.8 follows
the one of [JT23b] (see Proposition 3.2 there), where the realization of measure
algebra homomorphisms as pullbacks is thoroughly discussed.
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1.6 Exercises
Exercise 1.1. Let τ : X → Y be a measure-preserving map between probability
spaces. Assume that σ : Y → X is measurable with (σ ◦ τ)(x) = x for almost every
x ∈ X. Show that σ is measure-preserving.

Exercise 1.2. (i) Equip X = [0, 1) with the Borel σ-algebra and the Lebesgue
measure, and consider the doubling map τ : X → X, x 7→ 2x mod 1. Show
that τ is a measurable and measure-preserving map which does not define an
invertible element of M(X,X).

(ii) Equip Y = [0, 1] × [0, 1] with the Borel σ-algebra and the (two-dimensional)
Lebesgue measure, and consider the baker’s transformation

σ : Y → Y, (x, y) 7→

{
(2x, y/2) if 0 ≤ x < 1/2,

(2x− 1, y+1/2) if 1/2 ≤ x ≤ 1.

Show that σ is a measurable and measure-preserving map which defines an
invertible element of M(Y, Y ).
Hint: Use Proposition 1.1.4.

Exercise 1.3. Let τ : X → X be a measure-preserving map on a probability space
X and A ⊆ X a measurable subset with µX(A) > 0. Show that there are infinitely
many n ∈ N with µX(A ∩ τ−n(A)) > 0.

Exercise 1.4. Let X be a probability space. We set

d(A,B) := µX(A∆B) =

∫
X

|1A − 1B| = ∥1A − 1B∥1

for A,B ∈ Σ(X). Show the following assertions.

(i) d is a metric on Σ(X).

(ii) The metric space (Σ(X), d) is complete.

(iii) d(X \ A,X \B) = d(A,B) for all A,B ∈ Σ(X).

(iv) d(A ∩B,C ∩D) ≤ d(A,C) + d(B,D) for all A,B,C,D ∈ Σ(X).

(v) d(A \B,C \D) ≤ d(A,C) + d(B,D) for all A,B,C,D ∈ Σ(X).

(vi) d(A ∪B,C ∪D) ≤ d(A,C) + d(B,D) for all A,B,C,D ∈ Σ(X).

(vii) |µX(A)− µX(B)| ≤ d(A,B) for all A,B ∈ Σ(X).

(viii) |µX(A ∩B)− µX(C ∩D)| ≤ d(A,C) + d(B,D) for all A,B,C,D ∈ Σ(X).

(ix) If (An)n∈N is a sequence in Σ(X) with µX(An \ An+1) = 0 for every n ∈ N,
then limn→∞An =

⋃
n∈NAn with respect to d.
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Exercise 1.5. Prove Lemma 1.2.6.

Exercise 1.6. Let X be a probability space. For A,B ∈ Σ(X) write A ≤ B if
µX(A \B) = 0. Show the following assertions.

(i) ≤ is a partial order on Σ(X).

(ii) For a probability space Y , a measure algebra homomorphism T : Σ(Y ) →
Σ(X), and A,B ∈ Σ(Y ), we have A ≤ B precisely when T (A) ≤ T (B).

Recall for any partially ordered set Λ and a subset M ⊆ Λ, the smallest element
s ∈ Λ with m ≤ s for every m ∈M (if it exists) is called the supremum supM of
M . We now investigate suprema in Σ(X) with respect to the partial order above.
Show the following assertions.

(iii) For a countable subset M ⊆ Σ(X) the supremum supM exists and is given
by supM =

⋃
A∈M A.

(iv) For any subsetM ⊆ Σ(X) the supremum supM exists and there is a countable
subset N ⊆M with supM = supN =

⋃
A∈N A.

Hint: Find a sequence (Nk)k∈N of countable subsets Nk ⊆M with Nk ⊆ Nk+1

for every k ∈ N as well as

lim
k→∞

µX

( ⋃
A∈Nk

A

)
= sup

{
µX

(⋃
A∈C

A

)
| C ⊆M countable

}
,

and then consider N :=
⋃
k∈NNk.

(v) For a probability space Y and a measure algebra homomorphism T : Σ(Y )→
Σ(X) we have T (supM) = supT (M) for every subset M ⊆ Σ(Y ).

Exercise 1.7. Give an example of probability spaces X and Y and distinct σ, τ ∈
M(X, Y ) with σ∗ = τ ∗.
Hint: Equip {0, 1} with the trivial σ-algebra {∅, {0, 1}}.



Lecture 2

In this second lecture we introduce the key objects of the course: Measure-preserving
systems. We then discuss Bernoulli shifts as an important class of examples. Fi-
nally, we introduce the property of “ergodicity” and study different approaches to
subsystems of a measure-preserving system.

2.1 Measure-Preserving Systems
In ergodic theory, we are interested in the asymptotic behavior of measure-preserving
transformations. In this course, we will also assume that these are invertible, and
introduce the following notation for a probability space X.

(i) Aut(X) := {τ ∈ M(X,X) | τ invertible},
(ii) Aut(Σ(X)) := {T ∈ M(Σ(X),Σ(X)) | T bijective}, and

(iii) Aut(L2(X)) := {U ∈ M(L2(X),L2(X)) | U bijective}.

Elements of these sets are called automorphisms of X, measure algebra auto-
morphisms of Σ(X), and Markov automorphisms of L2(X), respectively.

Note that all these sets equipped with the natural compositions are groups. Theorem
1.3.7 yields a group isomorphism between Aut(Σ(X)) and Aut(L2(X)) (cf. Remark
1.3.5). If X is a Lebesgue space, then by Theorem 1.2.8 (and Remark 1.2.4) all
three groups are isomorphic.

We could now study the behavior of the iterates of an element in any one of these
automorphism groups. However, we start from a more general definition of measure-
preserving systems.

Let Γ be an arbitrary (discrete) abelian1 group (e.g., Γ = Zn, n ≥ 1, Γ = Fωp =⊕∞
n=1 Fp, where Fp is the finite field of prime order p) and fix this for now.

1Some topics of these lectures can be treated in the framework of arbitrary groups (or even
semigroups). However, we restrict to the case of abelian groups throughout the entire course.

19
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Definition 2.1.1. An (abelian) measure-preserving system (X,T ) consists of
a probability space X and a group homomorphism

T : Γ→ Aut(Σ(X)), γ 7→ Tγ,

i.e., Tγ1+γ2 = Tγ1Tγ2 for γ1, γ2 ∈ Γ.

For a measure-preserving system (X,T ) the induced group homomorphism

UT : Γ→ Aut(L2(X)), γ 7→ UTγ

is the Koopman representation of (X,T ).

The following are trivial, but important examples of measure-preserving systems.

Example 2.1.2. For any probability space X we have a system (X, Id) given by
the group homomorphism Id : Γ → Aut(Σ(X)), γ 7→ IdΣ(X). A very special case is
the trivial system ({0}, Id) where {0} is equipped with the point measure δ0 (cf.
Example 1.1.3 (ii)).

Most examples are given by concrete measure-preserving maps. We therefore intro-
duce a second type of measure-preserving systems.

Definition 2.1.3. A concrete measure-preserving system (X, τ) consists of a
probability space X and a group homomorphism

τ : Γ→ Aut(X), γ 7→ τγ.

Remark 2.1.4. One has to be a bit careful here: If we choose a concrete measure-
preserving map representing τγ for γ ∈ Γ, the identity τγ1+γ2 = τγ1τγ2 only holds
outside of a nullset depending on γ1 and γ2. In particular, notions like the orbit of
a point do not make sense in this framework.2

We immediately obtain the following fact (cf. Remark 1.3.5).

Proposition 2.1.5. Every concrete measure-preserving system (X, τ) gives rise to
a measure-preserving system (X, τ ∗) as in Definition 2.1.1 by setting

(τ ∗)γ := (τγ)
∗ : Σ(X)→ Σ(X), A 7→ τ−1

γ (A)

for γ ∈ Γ.

If X is a Lebesgue space, then – as a consequence of Theorem 1.2.8 – every measure-
preserving system (X,T ) is of the form (X, τ ∗) for a uniquely determined concrete
measure-preserving system (X, τ), see Exercise 2.6 below.

2In the case of a countable group Γ (which suffices for most applications), one can circumvent
this problem and transition to a proper action of Γ on X by measure-preserving maps. However,
we avoid these measure-theoretic intricacies altogether by using Definition 2.1.1 and working on
the level of measure algebras.
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Remark 2.1.6. Notice that if Γ = Z, then a measure-preserving system (X, T ) is
completely determined by T1 : Σ(X) → Σ(X) since Tm = Tm1 for every m ∈ Z.
Conversely, if S : Σ(X)→ Σ(X) is a measure algebra automorphism, then T : Z→
Aut(Σ(X)), n 7→ Sn yields a measure-preserving system with respect to the group Z.
This establishes a one-to-one correspondence between measure-preserving systems
over Z and automorphisms S : Σ(X)→ Σ(X). We will occasionally abuse notation
and, for an automorphism S : Σ(X)→ Σ(X), refer to (X,S) as a measure-preserving
system over Z. An analogous correspondence holds for concrete measure-preserving
systems (X, τ) over Z and elements σ ∈ Aut(X), and we use a similar convention.

In view of the previous remark, we already obtain some examples of concrete
measure-preserving systems from the previous lecture. To introduce another in-
teresting and important class of examples, we need the concept of product measures
for possibly infinitely many spaces (see [HS65, Section 22]).

Proposition and Definition 2.1.7. Let I ̸= ∅ be an index set and Xi a probability
space for each i ∈ I. For a finite set {i1, . . . , im} ⊆ I and measurable sets Aj ∈ ΣXij

for j ∈ {1, . . . ,m} we call

Z(i1, . . . , im;A1, . . . , Am) :=

{
(xi)i∈I ∈

∏
i∈I

Xi | xij ∈ Aj for all j ∈ {1, . . . ,m}
}

a (measurable) cylinder set. The smallest σ-algebra over
∏

i∈I Xi containing all
such cylinder sets is the product-σ-algebra

⊗
i∈I ΣXi

. There is a unique probability
measure

⊗
i∈I µXi

:
⊗

i∈I ΣXi
→ [0, 1], called the product measure, with⊗

i∈I

µXi
(Z(i1, . . . , im;A1, . . . , Am)) = µXi1

(A1) · · ·µXim
(Am)

for each cylinder set Z(i1, . . . , im;A1, . . . , Am).

If I ̸= ∅ is an index set and X is a probability space, we also write XI for the
product probability space

∏
i∈I X (i.e., in case Xi = X for all i ∈ I). With this

notation, we introduce a new example for a measure-preserving system.

Example 2.1.8. Let X be any probability space, e.g., X = {0, . . . , k− 1} with the
probability measure defined by the probability vector p = ( 1

k
, . . . , 1

k
), see Example

1.1.3 (ii). Then τ : Γ → Aut(XΓ), γ 7→ τγ with τγ(xδ)δ∈Γ = (xδ+γ)δ∈Γ for (xδ)δ∈Γ ∈
XΓ and γ ∈ Γ defines a concrete measure-preserving system (XΓ, τ): For γ ∈ Γ and
a cylinder set Z(δ1, . . . , δm;A1, . . . , Am) we obtain

τ−1
γ (Z(δ1, . . . , δm;A1, . . . , Am)) = {(xδ)δ∈Γ | xδj+γ ∈ Aj for every j ∈ {1, . . . ,m}}

= Z(δ1 + γ, . . . , δm + γ;A1, . . . , Am),
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and therefore

µXΓ(τ−1
γ (Z(δ1, . . . , δm;A1, . . . , Am))) = µXΓ(Z(δ1 + γ, . . . , δm + γ;A1, . . . , Am))

= µX(A1) · · ·µX(Am)
= µXΓ(Z(δ1, . . . , δm;A1, . . . , Am)).

Since cylinder sets form a ∩-stable generator of the σ-algebra ΣXΓ , we obtain that
the map τγ : X

Γ → XΓ is measurable and measure-preserving for every γ ∈ Γ by
Proposition 1.1.4. Moreover, it is clear that τγ1+γ2 = τγ1 ◦ τγ2 for all γ1, γ2 ∈ Γ. We
call the system (XΓ, τ) (and also the induced measure-preserving system (XΓ, τ ∗)
on the level of measure algebras) a Bernoulli shift.

We now introduce a crucial irreducibility property for measure-preserving systems.

Definition 2.1.9. For a measure-preserving system (X,T ) we say that A ∈ Σ(X)
is invariant if Tγ(A) = A for every γ ∈ Γ. We set

Σ(X)inv := {A ∈ Σ(X) | A invariant} ⊆ Σ(X).

The system (X,T ) is called ergodic if every invariant A ∈ Σ(X) already satisfies
µX(A) ∈ {0, 1}, i.e., Σ(X)inv = {∅, X}.

Examples 2.1.10. (i) For a system with trivial dynamics (X, Id) (see Example
2.1.2) every element A ∈ Σ(X) is invariant. Hence, such a system (X, Id)
is ergodic precisely when Σ(X) = {∅, X}. Thus, (X, Id) is “almost never”
ergodic.

(ii) Consider the set X = {0, 1} with the probability measure defined by the
probability vector (1

2
, 1
2
) and the measure preserving system (X, τ ∗) over Γ = Z

defined by the measure-preserving map τ : X → X, m 7→ 1−m, see Example
1.1.3 (ii) and Remark 2.1.6. Then (X, τ ∗) is ergodic.

What about Bernoulli shifts? For the trivial group Γ = {0}, we have (XΓ, τ ∗) =
(XΓ, Id), and this is only ergodic if Σ(X) = {∅, X}. The same is true for any
finite abelian group Γ (see Exercise 2.4). However, for infinite groups we obtain the
following.

Proposition 2.1.11. If the group Γ is infinite, then the Bernoulli shift (XΓ, τ ∗) is
ergodic. Moreover, for all measurable subsets A,B ⊆ XΓ and every ε > 0 there is a
finite subset F ⊆ Γ such that

|µXΓ(τ−1
γ (A) ∩B)− µXΓ(A) · µXΓ(B)| ≤ ε for every γ ∈ Γ \ F.

For the proof of Proposition 2.1.11 we need two statements from measure theory.
The first one is a general approximation result for measurable sets, see, e.g., [Bil95,
Theorem 11.4].
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Lemma 2.1.12. Let X be a probability space and E ⊆ ΣX a generator of the σ-
algebra which is an algebra over X, i.e., ∅, X ∈ E and A ∪ B,A ∩ B,A \ B ∈ E
whenever A,B ∈ E. Then for every measurable subset A ⊆ X and ε > 0 there is
B ∈ E with µX(A∆B) ≤ ε.

The second auxiliary result is a compatibility statement for product measures. If
we decompose the index set of a product space into two parts, then the product
measure can also be written as a product of two product measures:

Lemma 2.1.13. Assume that I ̸= ∅ is an index set and Xi is a probability space
for every i ∈ I. If for ∅ ≠ J ⊊ I we naturally identify∏

i∈I

Xi =
∏
i∈J

Xi ×
∏
i∈I\J

Xi

as sets, then⊗
i∈I

ΣXi
=
⊗
i∈J

ΣXi
⊗
⊗
i∈I\J

ΣXi
and

⊗
i∈I

µXi
=
⊗
i∈J

µXi
⊗
⊗
i∈I\J

µXi
.

A proof can be found in [HS65, Lemmas 22.4 and 22.12].

Proof of Proposition 2.1.11. We show the second claim first and start with partic-
ularly simple measurable sets A,B ∈ ΣXΓ . For every finite subset E ⊆ Γ we may
identify XΓ = XE × XΓ\E, hence for each C ∈ ΣXE the set C × XΓ\E defines a
measurable subset Z(E,C) of XΓ by Lemma 2.1.13. We make the following basic
observations about these measurable sets which “depend only on a finite number of
coordinates”:

(i) For disjoint finite subsets E,E ′ ⊆ Γ, C ∈ ΣXE , and C ′ ∈ ΣXE′ we have
Z(E,C) ∩ Z(E ′, C ′) = Z(E ∪ E ′, C × C ′).

(ii) For every finite subset E ⊆ Γ and C ∈ ΣXE we have µXΓ(Z(E,C)) = µXE(C).

(iii) If E ⊆ Γ is a finite subset and γ ∈ Γ, then (since E and E + γ have the
same cardinality) we can identify XE with XE+γ. With this identification, we
obtain τ−1

γ (Z(E,C)) = Z(E + γ, C) for every C ∈ XE.

Now set E := {Z(E,C) | E ⊆ Γ finite, C ∈ ΣXE}. It is easy to check that E is
an algebra over XΓ, and, since it contains all measurable cylinder sets, it generates
the σ-algebra ΣXΓ . We now show the second statement for sets A,B ∈ E , even in
a stronger version. The idea is to shift A far enough that it “lives on coordinates
disjoint from those of B”.

To make this precise, take finite subsets E,E ′ ⊆ Γ as well as measurable sets
C ∈ ΣXE and C ′ ∈ ΣXE′ . Then F := E ′ − E = {γ′ − γ | γ′ ∈ E ′, γ ∈ E} is a
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finite subset of Γ. For γ ∈ Γ\F , the sets E+γ and E ′ are disjoint. Using properties
(i) – (iii) above and Lemma 2.1.13, we therefore obtain

µXΓ(τ−1
γ (Z(E,C)) ∩ Z(E ′, C ′)) = µXΓ(Z(E + γ, C) ∩ Z(E ′, C ′))

= µXΓ(Z((E + γ) ∪ E ′, C × C ′) = µX(E+γ)∪E′ (C × C ′)

= µXE+γ (C) · µXE′ (C ′) = µXE(C) · µXE′ (C ′)

= µXΓ(Z(E,C)) · µXΓ(Z(E ′, C ′)).

For general measurable subsets A,B ⊆ X we establish the claimed inequality by
using an approximation argument. For ε > 0 we find by Lemma 2.1.12 sets A′, B′ ∈
E with µXΓ(A∆A′) ≤ ε

4
and µXΓ(B∆B′) ≤ ε

4
. By the above, we find a finite subset

F ⊆ Γ with µXΓ(τ−1
γ (A′)∩B′) = µXΓ(A′) ·µXΓ(B′) for all γ ∈ Γ\F . For each γ ∈ Γ

we obtain by Exercise 1.4 and Lemma 1.2.6 (iii),

|µXΓ(τ−1
γ (A) ∩B)− µXΓ(τ−1

γ (A′) ∩B′)| ≤ µXΓ(τ−1
γ (A)∆ τ−1

γ (A′)) + µXΓ(B∆B′)

= µXΓ(A∆A′) + µXΓ(B∆B′) ≤ ε

2
,

and, by the triangle inequality and Exercise 1.4,

|µXΓ(A)µXΓ(B)− µXΓ(A′)µXΓ(B′)| ≤ |µXΓ(A)− µXΓ(A′)|+ |µXΓ(B)− µXΓ(B′)|

≤ µXΓ(A∆A′) + µXΓ(B∆B′) ≤ ε

2
.

Applying the triangle inequality once more, we obtain the desired estimate.

To prove ergodicity, let A ∈ Σ(X) be invariant. For ε > 0 we find a finite subset
F ⊆ Γ with

|µXΓ((τγ)
∗(A) ∩ A)− µXΓ(A) · µXΓ(A)| ≤ ε

for every γ ∈ Γ \ F . Since Γ is infinite, such a γ actually exists. From A being
invariant we conclude (τγ)

∗(A) = A, and therefore µXΓ((τγ)
∗(A) ∩ A) = µXΓ(A).

This implies, |µXΓ(A)−µXΓ(A)2| ≤ ε. Since ε > 0 was arbitrarily chosen, we obtain
µXΓ(A)2 = µXΓ(A), and therefore µXΓ(A) ∈ {0, 1}.

2.2 Subsystems and Extensions

To understand the relation between different measure-preserving systems we also
need “structure-preserving maps” between them. This leads to the following defini-
tion.
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Definition 2.2.1. An extension (or homomorphism) J : (Y, S) → (X,T ) of
measure-preserving systems is a measure algebra homomorphism J : Σ(Y )→ Σ(X)
such that the diagram

Σ(X)
Tγ // Σ(X)

Σ(Y )

J

OO

Sγ // Σ(Y )

J

OO

commutes for every γ ∈ Γ. In this case, we call (Y, S) a subsystem of (X,T ).
Moreover, J is an isomorphism of measure-preserving systems if, in addition, J is
bijective.

On the level of concrete measure-preserving systems, the “arrows reverse”, and we
speak of factors instead of subsystems:

Definition 2.2.2. A factor map q : (X, τ)→ (Y, σ) of concrete measure-preserving
systems is an element q ∈ M(X, Y ) such that the identity σγ ◦ q = q ◦ τγ holds in
M(X, Y ) for all γ ∈ Γ. In this case, we call (Y, σ) a factor of (X, τ). Moreover, q
is an isomorphism of concrete measure-preserving systems if, in addition, q is an
isomorphism of probability spaces.

A simple example is the following.

Example 2.2.3. For Γ = Z and α ∈ [0, 1) consider the system (X, τ) defined
by the measure-preserving map [0, 1) → [0, 1), x 7→ x + α mod 1 from Example
1.1.3 (iii) (cf. Remark 2.1.6). If we pick another β ∈ [0, 1), the addition map
q : [0, 1) → [0, 1), x 7→ x + β mod 1 defines an isomorphism q : (X, τ) → (X, τ) of
concrete measure-preserving systems (since addition modulo 1 is commutative).

The following analogue of Proposition 2.1.5 is evident.

Proposition 2.2.4. If q : (X, τ) → (Y, σ) is a factor map of concrete measure-
preserving systems, then q∗ : Σ(Y ) → Σ(X), A 7→ q−1(A) defines an extension
q∗ : (Y, σ∗) → (X, τ ∗) in the sense of Definition 2.2.1. If q is an isomorphism,
then so is q∗.

We now discuss an alternative perspective on subsystems and extensions.

Proposition and Definition 2.2.5. If J : (Y, S) → (X,T ) is an extension of
measure-preserving systems, then Λ := J(Σ(Y )) ⊆ Σ(X) is an invariant sub-σ-
algebra, i.e.,

(i)
⋃
n∈NAn ∈ Λ whenever An ∈ Λ for n ∈ N,

(ii) X \ A ∈ Λ for every A ∈ Λ,

(iii) ∅, X ∈ Λ, and
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(iv) Tγ(A) ∈ Λ for all A ∈ Λ and γ ∈ Γ.

Proof. Parts (i)–(iii) are a direct consequence of Lemma 1.2.6 (i), (ii), and (iv). For
part (iv) consider A = J(B) ∈ J(Σ(Y )) for some B ∈ Σ(Y ). For γ ∈ Γ we then
obtain

Tγ(A) = Tγ(J(B)) = (Tγ ◦ J)(B) = (J ◦ Sγ)(B) = J(Sγ(B)) ∈ J(Σ(Y )).

Remark 2.2.6. Note that the associated invariant sub-σ-algebra completely deter-
mines a subsystem up to an isomorphism: If J1 : (Y1, S1)→ (X,T ) and J2 : (Y2, S2)→
(X,T ) are extensions with J1(Σ(Y1)) = J2(Σ(Y2)), then J−1

2 ◦ J1 : Σ(Y1) → Σ(Y2)
defines an isomorphism between (Y1, S1) and (Y2, S2).

We now follow the converse direction: For a given measure-preserving system (X,T )
and an invariant sub-σ-algebra Λ ⊆ Σ(X) we build a subsystem of (X,T ) in the
following way:

(i) The set ΣΛ := {A ⊆ X measurable | [A] ∈ Λ} is a σ-algebra over X and
the restriction (µX)|ΣΛ

: ΣΛ → [0, 1] is a probability measure. Thus XΛ :=
(X,ΣΛ, µ|ΣΛ

) is a probability space.

(ii) The map JΛ : Σ(XΛ) → Σ(X), A 7→ A is a measure algebra homomorphism
with range JΛ(Σ(XΛ)) = Λ.

(iii) For every γ ∈ Γ we obtain a measure algebra automorphism

(TΛ)γ := J−1
Λ ◦ Tγ|Λ ◦ JΛ : Σ(XΛ)→ Σ(XΛ).

This gives us a group representation TΛ : Γ → Aut(Σ(XΛ)), γ 7→ (TΛ)γ, thus
(XΛ, TΛ) is a measure-preserving system.

It is then clear by construction that the following holds.

Proposition 2.2.7. Let (X,T ) be a measure-preserving system and Λ ⊆ Σ(X) an
invariant sub-σ-algebra. Then JΛ defines an extension JΛ : (XΛ, TΛ)→ (X,T ) with
JΛ(Σ(XΛ)) = Λ.

Thus, up to isomorphism, subsystems of a given measure-preserving system (X,T )
are in one-to-one correspondence with invariant sub-σ-algebras of the measure alge-
bra Σ(X). We use this observation in the following special case.

Example 2.2.8. Let (X,T ) be any measure-preserving system (X,T ). By Lemma
1.2.6, the set Λ := Σ(X)inv from Definition 2.1.9 is an invariant sub-σ-algebra of
Σ(X), hence defines an extension JΛ : (XΛ, TΛ) → (X,T ) of measure-preserving
systems. Note that by construction (TΛ)γ = IdΣ(XΛ) for every γ ∈ Γ, so the dynamics
on XΛ in this case are trivial. We write Jinv := JΛ and (Xinv, Id) := (XΛ, TΛ).
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We also describe subsystems on a functional analytic level: If J : (Y, S) → (X,T )
is an extension of measure-preserving systems, then the induced Koopman opera-
tor UJ : L2(Y ) → L2(X) from Proposition 1.3.4 satisfies UJUSγ = UTγUJ for each
γ ∈ Γ, cf. Remark 1.3.5. Combining this observation with Proposition 1.3.3, we
immediately obtain the properties of the range of UJ .

Proposition and Definition 2.2.9. Let J : (Y, S) → (X,T ) be an extension of
measure-preserving systems. Then E = UJ(L

2(Y )) is an invariant Markov sub-
lattice of L2(X), i.e.,

(i) E is a closed linear subspace of L2(X),

(ii) 1 ∈ E,

(iii) |f |, Re(f), Im(f) ∈ E for every f ∈ E, and

(iv) UTγf ∈ E for every f ∈ E and γ ∈ Γ.

Remark 2.2.10. As a consequence of Theorem 1.3.7, a subsystem is again uniquely
determined up to an isomorphism by the corresponding Markov sublattice. The
details are discussed in Exercise 2.7 below.

We again go the converse direction and construct a subsystem from an invariant
Markov sublattice. We use the following lemma.

Lemma 2.2.11. Assume that (X,T ) is a measure-preserving system and further
that E ⊆ L2(X) is an invariant Markov sublattice. Then

ΛE := {A ∈ Σ(X) | 1A ∈ E} ⊆ Σ(X)

is an invariant sub-σ-algebra.

Proof. We check the properties listed in Definition 2.2.5. To obtain property (i),
note first that for A,B ∈ ΛE we also have A ∪B ∈ ΛE since

1A∪B = sup(1A,1B) =
1A + 1B + |1A − 1B|

2
∈ E.

We thus obtain A1 ∪ · · · ∪ An ∈ ΛE for all A1, . . . , An ∈ ΛE and n ∈ N by in-
duction. Now if (An)n∈N is a sequence in Λ and A :=

⋃
n∈NAn ∈ Σ(X), then

1A = limn→∞ 1A1∪···∪An pointwise and hence in L2(X) by Lebesgue’s theorem. This
shows A ∈ ΛE, and hence establishes property (i) of Definition 2.2.5. For part (ii),
note that if A ∈ ΛE, then 1X\A = 1− 1A ∈ E, hence X \A ∈ ΛE. For (iii) observe
that 1∅ = 0 ∈ E (since E is a linear subspace) and 1X = 1 ∈ E, hence ∅, X ∈ ΛE.
Finally, (iv) of Definition 2.2.5 is obvious by part (iv) of Definition 2.2.9.

We again consider the construction in a special case. For this we need the concept
of the fixed space fix(V ) := {f ∈ E | V f = f} of a linear map V : E → E on a
complex vector space E.
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Example 2.2.12. Let (X,T ) be a measure-preserving system. Then, by the prop-
erties of Markov embeddings (see Definition 1.3.2 and Lemma 1.3.3), the fixed
space

fix(UT ) :=
⋂
γ∈Γ

fix(UTγ ) = {f ∈ L2(X) | UTγf = f for every γ ∈ Γ}

is an invariant Markov sublattice of L2(X). Since UTγ1A = 1Tγ(A) for A ∈ Σ(X) and
γ ∈ Γ, the corresponding sub-σ-algebra Λfix(UT ) is precisely Σ(X)inv from Examples
2.1.9 and 2.2.8.

For a measure-preserving system (X,T ) we now build subsystems from an invari-
ant Markov sublattice E ⊆ L2(X): First construct the invariant sub-σ-algebra
ΛE := {A ∈ Σ(X) | 1A ∈ E} of Lemma 2.2.11, and from this the extension
JΛE

: (XΛE
, TΛE

) → (X,T ), see Proposition 2.2.7. We abbreviate (XE, TE) :=
(XΛE

, TΛE
) and JE := JΛE

, and show the following result.

Proposition 2.2.13. Let (X,T ) be a measure-preserving system and E ⊆ L2(X)
an invariant Markov sublattice. Then JE : (XE, TE) → (X,T ) is an extension with
UJE(L

2(XE)) = E.

Proof. The inclusion “⊆” follows from the facts that E is a closed linear subspace,
UJE is a bounded linear map, and the subspace spanned by (equivalence classes of)
characteristic functions is dense in L2(XE) by Lemma 1.3.6.

For the converse inclusion, we make a few observations.

(i) For f, g ∈ E ∩ L2(X,R) we have

inf(f, g) =
f + g − |f − g|

2
∈ E and sup(f, g) =

f + g + |f − g|
2

∈ E.

(ii) Recall thatXE is given by the setX, the σ-algebra ΣΛE
= {A ⊆ X measurable |

[A] ∈ ΛE} and the restriction µX |ΣΛE
: ΣΛE

→ [0, 1]. Moreover, the Koopman
operator UJE induced by the measure algebra homomorphism JE : Σ(XΛ) →
Σ(X), A 7→ A (see Proposition 1.3.4) is explicitly given as UJE : L2(XE) →
L2(X), f 7→ f .

(iii) If A ∈ ΣΛE
, then

∫
X
1A = µX(A) =

∫
XE
1A. By the “standard measure-

theoretic procedure” we also obtain that for a function f : X → [0,∞) which
is measurable with respect to ΣΛE

the integrals
∫
X
f and

∫
XE

f agree. In
particular, this implies that if f : X → [0,∞) is ΣΛE

-measurable and square-
integrable on the probability space X = (X,ΣX , µX), then f is also square-
integrable on XE = (X,ΣΛE

, µX |ΣΛE
) (with the same L2-norm).

Now pick f ∈ E and show that f ∈ UJE(L2(XE)). By decomposing into real and
imaginary parts we may assume that f ∈ L2(X,R). Take a identically named
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representative of f . By observations (ii) and (iii) above, it suffices to check that f
is measurable with respect to ΣΛE

. So for c ∈ R we show that [f > c] is an element
of ΛE, i.e., 1[f>c] ∈ E. Replacing f by f − c we may assume that c = 0. Now notice
that for every r ∈ R we have

lim
n→∞

min(n ·max(r, 0), 1) =

{
1 if r > 0,

0 if r ≤ 0.

This implies 1{f>0} = limn→∞ inf(n sup(f, 0),1) in L2(X). By observation (i) above
and the fact that E is closed in L2(X), we therefore obtain 1{f>0} ∈ E as claimed.

As a consequence, we obtain the following important functional analytic character-
ization of ergodic systems.

Corollary 2.2.14. Let (X,T ) be a measure-preserving system. Then the linear hull
lin{1A | A ∈ Σ(X)inv} is dense in fix(UT ). In particular, the following assertions
are equivalent.

(a) (X,T ) is ergodic.

(b) fix(UT ) = {c1 | c ∈ C}.

Proof. By Example 2.2.12 and Proposition 2.2.13 we obtain that the Markov em-
bedding UJinv : L

2(Xinv) → L2(X) has the range UJinv(L2(Xinv)) = fix(UT ). Since
lin{1B | B ∈ Σ(Xinv)} is dense in L2(Xinv) by Lemma 1.3.6, and UJinv is a bounded
linear operator, the subspace

lin{UJinv1B | B ∈ Σ(Xinv)} = lin{1Jinv(B) | B ∈ Σ(Xinv)} = lin{1A | A ∈ Σ(X)inv}

is dense in fix(UT ).

The last result of this lecture allows a way to build invariant Markov sublattices
(and therefore subsystems of a measure-preserving system) from certain “invariant
subalgebras”.

Proposition 2.2.15. Let (X,T ) be a measure-preserving system. Assume that F ⊆
L∞(X) is a linear subspace with

(i) f · g ∈ F for all f, g ∈ F ,

(ii) f ∈ F for all f ∈ F ,

(iii) 1 ∈ F , and

(iv) UTγf ∈ F for all f ∈ F and γ ∈ Γ.

Then the closure F in L2(X) is an invariant Markov sublattice.
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For the proof we use the following identity. Recall that the binomial coefficients
(
α
k

)
for α ∈ C are(

α

k

)
:=

α · (α− 1) · · · (α− k + 1)

k!
for k ∈ N, and

(
α

0

)
:= 1.

Lemma 2.2.16. Let X be a probability space and f ∈ L∞(X) with ∥f∥∞ ≤ 1. Then

|f | = lim
n→∞

n∑
k=0

(
1
2

k

)
(−1)k(1− |f |2)k

in L∞(X).

Proof. For α ∈ (0,∞) series
∑∞

k=0

(
α
k

)
zk converges absolutely and uniformly to

(1 + z)α for z ∈ C with |z| ≤ 1 (see, e.g., [AE05, Theorem V.3.10]). Observing that
|z| = (1− (1− |z|2)) 1

2 for z ∈ C, we therefore find for ε > 0 some n0 ∈ N with∣∣∣∣|z| − n∑
k=0

(
1
2

k

)
(−1)k(1− |z|2)k

∣∣∣∣ ≤ ε

all z ∈ C with |z| ≤ 1 and for every n ≥ n0. This implies∣∣∣∣|f | − n∑
k=0

(
1
2

k

)
(−1)k(1− |f |2)k

∣∣∣∣ ≤ ε1

almost everywhere for n ≥ n0 which yields the claim.

Proof of Proposition 2.2.15. We check properties (i) - (iv) of Definition 2.2.9. As the
closure of a linear subspace is again a linear subspace, we obtain (i). Property (ii) is
clear by our assumption (iv) of Proposition 2.2.15. To obtain Definition 2.2.9 (iii),
take f ∈ F with ∥f∥∞ ≤ 1, then |f |2 = f ·f ∈ F by properties (i) and (ii). Since L∞-
convergence implies L2-convergence, Lemma 2.2.16 shows |f | ∈ F . If f ∈ F , we find
a sequence (fn)n∈N converging in L2 to f , and this implies |f | = limn→∞ |fn| ∈ F .
Finally, part (iv) of Definition 2.2.9 is an easy consequence of Proposition 2.2.15 (iv)
and continuity of UTγ : L2(X)→ L2(X) for γ ∈ Γ.

To summarize this section, we can define subsystems of a measure-preserving system
(X,T ) in three different ways:

(i) via extensions J : (Y, S)→ (X,T ),

(ii) via invariant sub-σ-algebras Λ ⊆ Σ(X), and

(iii) via invariant Markov sublattices E ⊆ L2(X).
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2.3 Comments and Further Reading
There is a plethora of textbooks on ergodic theory focusing on various different as-
pects. A few classical works related to the topics of this course are [Hal56], [Wal75],
and [Fur14]. We also mention [Gla03], [EW11] and [VO16] for contemporary intro-
ductions, and [DNP87] and [EFHN15] for an operator theoretic approach to ergodic
theory. A large part of the material of this course is based on the contents of
these monographs and two previous editions of the Internet Seminar ([EFHN09]
and [EF19]).

We remark that there are numerous further equivalent descriptions of subsystems of
a given measure-preserving systems, see [EFHN15, Theorem 13.20]. Studying exten-
sions of measure-preserving systems will play a crucial part later in this course.
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2.4 Exercises
Exercise 2.1. For an index set I ̸= ∅ let τi : Xi → Yi be measure-preserving maps
between probability spaces for every i ∈ I. Show that the map∏

i∈I

τi :
∏
i∈I

Xi →
∏
i∈I

Yi, (xi)i∈I 7→ (τi(xi))i∈I

between the product measure spaces is also measure-preserving.

Exercise 2.2. With the notation from Exercise 1.6 show that for a measure-preserving
system (X,T ) the following assertions are equivalent.

(a) (X,T ) is ergodic.

(b) X = sup{Tγ(A) | γ ∈ Γ} in Σ(X) for every A ∈ Σ(X) \ {∅}.

Exercise 2.3. Show that for a measure-preserving map σ : X → X on a probability
space X the following assertions are equivalent.

(a) σ∗(A) = A for A ∈ Σ(X) implies µX(A) ∈ {0, 1}.
(b) σ−1(A) = A for A ⊆ X measurable implies µX(A) ∈ {0, 1}.

Hint: For a representative of A as in (a) consider
⋂∞
n=0

⋃∞
k=n σ

−k(A).

Exercise 2.4. Assume that Γ is a finite abelian group and consider the Bernoulli
shift (XΓ, τ) from Example 2.1.8. Show that the system (XΓ, τ ∗) is ergodic precisely
when Σ(X) = {∅, X}.

Exercise 2.5. For Γ = Z consider the Bernoulli shift ({0, 1}Z, τ) where the mea-
sure on {0, 1} is given by the probability vector (1

2
, 1
2
), see Examples 1.1.3 (ii) and

2.1.8. Let further ([0, 1]2, σ) be the measure-preserving system defined by the baker’s
transformation from Exercise 1.2 (cf. Remark 2.1.6). Then the map

q : {0, 1}Z → [0, 1]2, (xn)n∈Z 7→
( ∞∑
n=1

xn−1

2n
,

∞∑
n=1

x−n
2n

)
defines an isomorphism between ({0, 1}Z, τ) and ([0, 1]2, σ).
Hint: Recall that every x ∈ [0, 1) has a base 2 expansion x =

∑∞
n=1 xn2

−n for some
sequence (xn)n∈N ∈ {0, 1}N. Moreover, this representation becomes unique if we
exclude sequences (xn)n∈N such that there is N ∈ N with xn = 1 for all n ≥ N , see,
e.g., [AE05, Topic 6 of Section II.7]).

Exercise 2.6. Show the following assertions.

(i) For every measure-preserving system (X,T ) on a Lebesgue space X there is a
unique concrete measure-preserving system (X, τ) with (X,T ) = (X, τ ∗).
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(ii) If (X, τ) and (Y, σ) are concrete measure-preserving systems on Lebesgue
spacesX and Y and J : (Y, σ∗)→ (X, τ ∗) is an extension of measure-preserving
systems, then there is a unique factor map q : (X, τ) → (Y, σ) with J = q∗.
Moreover, q is an isomorphism precisely when J is an isomorphism.

Exercise 2.7. Show the following assertions.

(i) Let X be a probability space and U : Γ → Aut(L2(X)) a representation of Γ
as Markov automorphisms. Show that there is a unique measure-preserving
system (X,T ) with U = UT .

(ii) Let (Y, S) and (X,T ) be measure-preserving systems and V : L2(Y )→ L2(X)
a Markov embedding with V USγ = UTγV for all γ ∈ Γ. Then there is a unique
extension J : (Y, S) → (X,T ) with V = UJ . Moreover, J is an isomorphism
precisely when V is bijective.

(iii) Let J1 : (Y1, S1)→ (X,T ) and J2 : (Y2, S2)→ (X,T ) be extensions of measure-
preserving systems such that UJ1(L2(Y1)) = UJ2(L

2(Y2)). Then there is a
unique isomorphism I : (Y1, S1)→ (Y2, S2) of measure-preserving systems with
J2 = J1 ◦ I.

Exercise 2.8. For probability spaces X and Y let U : L2(Y ) → L2(X) be a linear
isometry with the following properties.

(i) U(L∞(Y )) ⊆ L∞(X),

(ii) U(f · g) = Uf · Ug for all f, g ∈ L∞(Y ),

(iii) Uf = Uf for every f ∈ L∞(Y ),

(iv) U1 = 1.

Show that U is a Markov embedding.
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Lecture 3

In this lecture we prove a general version of von Neumann’s famous mean ergodic
theorem, an assertion about the long-term behavior of measure-preserving transfor-
mations. As an application we show Khintchin’s refinement of Poincaré’s recurrence
theorem from the first lecture. In the second part of the lecture we then explore the
connection between ergodic theory and topological dynamics.

3.1 Averaging and the Mean Ergodic Theorem

Mathematical ergodic theory originated in statistical mechanics. A measure-pre-
serving map τ : X → X can model how a state x of a physical dynamical system
(describing, e.g., the position and impulse of all particles of a gas or fluid) is trans-
formed, by the principles of physics, into a new state τ(x). From this perspective, a
function f : X → C can be seen as an “observable” giving some measurable data f(x)
about any given state x of the system. By making measurements “after each time
step”, we obtain a sequence of observables f, f ◦ τ, f ◦ τ 2, f ◦ τ 3, . . . Von Neumann’s
famous mean ergodic theorem from 1931 provides information on the asymptotic
behavior of this sequence.

Theorem 3.1.1 (von Neumann). Let τ : X → X be a measure-preserving map.
Then limN→∞

1
N

∑N−1
n=0 U

n
τ f exists in L2(X) for every f ∈ L2(X) and is an element

of fix(Uτ ).

We deduce Theorem 3.1.1 from a general operator theoretic result. The necessary
notation, concepts and tools from basic Hilbert space theory are collected in Ap-
pendix A.2. We start from the following definition.

Definition 3.1.2. Let H be a Hilbert space. A family S ⊆ L (H) is a semigroup
(of operators) if UV ∈ S for all U, V ∈ S . It is a contraction semigroup if,
in addition, ∥U∥ ≤ 1 for all U ∈ S .

Generalizing the notion of the fixed space from Example 2.2.12, we introduce the

35
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following definition.

Definition 3.1.3. For a semigroup S ⊆ L (H) on a Hilbert space H we call

fix(S ) :=
⋂
U∈S

fix(U) = {f ∈ H | Uf = f for every U ∈ S }

the fixed space of S .

Remark 3.1.4. For every bounded linear operator U ∈ L (H) on a Hilbert space
H we obtain a semigroup SU := {Un | n ∈ N0}. Since the operator norm is
submultiplicative, SU is a contraction semigroup precisely when ∥U∥ ≤ 1. Note
further that fix(SU) = fix(U).

As recalled in the Appendix (see Theorem A.2.2), every closed linear subspace E ⊆
H of a Hilbert space can be orthogonally complemented to obtain a decomposition
H = E ⊕E⊥. For a contraction semigroup S ⊆ L (H) on a Hilbert space H there
is a nice description of the orthogonal complement of the fixed space fix(S ) in terms
of the ranges of the operators IdH − U for U ∈ S . Here and in the following, for a
subset A ⊆ H of a Hilbert space H,

(i) the closed convex hull coA is the closure of the set of all convex combinations
of elements of A, and

(ii) the closed linear hull linA is the closure of the set of all linear combinations
of elements of A.

Theorem 3.1.5 (Abstract Mean Ergodic Theorem). For every contraction semi-
group S ⊆ L (H) on a Hilbert space H we have an orthogonal decomposition

H = fix(S )⊕ lin
⋃
U∈S

(IdH − U)(H).

Moreover, the orthogonal projection P onto fix(S ) has the following properties.

(i) PU = UP = P for every U ∈ S .

(ii) For every f ∈ H the vector Pf ∈ H is the unique element of co {Uf | U ∈ S }
of minimal norm.

The proof uses the following elementary observation on the adjoint operator of a
contraction.

Lemma 3.1.6. Let U ∈ L (H) with ∥U∥ ≤ 1. Then fix(U) = fix(U∗).

Proof. Recall that the adjoint operator U∗ ∈ L (H) satisfies ∥U∗∥ = ∥U∥ ≤ 1. We
first show the inclusion “⊆”. By the “Pythagorean Theorem” we obtain for f ∈ fix(U)
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that

0 ≤ ∥U∗f − f∥2 = ∥U∗f∥2 − 2Re (U∗f |f) + ∥f∥2

= ∥U∗f∥2 − 2Re (f |Uf) + ∥f∥2 = ∥U∗f∥2 − 2∥f∥2 + ∥f∥2 = ∥U∗f∥2 − ∥f∥2

≤ ∥f∥2 − ∥f∥2 = 0.

This yields U∗f = f . Thus, fix(U) ⊆ fix(U∗). Since (U∗)∗ = U , the same argument
applied to U∗ shows fix(U∗) ⊆ fix((U∗)∗) = fix(U).

Proof of Theorem 3.1.5. We prove (i) and (ii), before we show the claimed decompo-
sition of H. For part (i), pick U ∈ S . Since PH = fix(S ), it is clear that UP = P
holds. By Lemma 3.1.6 we have fix(U) = fix(U∗), and therefore also U∗P = P .
Taking adjoints and using that P ∗ = P , we thus obtain

PU = ((PU)∗)∗ = (U∗P ∗)∗ = (U∗P )∗ = P ∗ = P.

For part (ii), take f ∈ H and set C := co {Uf | U ∈ S }. As a special case of
Theorem A.2.1, every non-empty closed convex set of a Hilbert space contains a
unique element of minimal norm. Let g be the unique element of minimal norm in
C. We show that g = Pf .

For U ∈ S we have UC ⊆ C since U is continuous and linear, and S is a semigroup.
In particular, Ug ∈ C. Since ∥Ug∥ ≤ ∥g∥, we must have Ug = g by choice of g. This
means g ∈ fix(S ), and therefore g = Pg ∈ PC. But, using that P is continuous
and linear, we have

PC ⊆ co {PUf | U ∈ S } = {Pf}

by part (i). Hence, Pf = g as claimed, and we have established (ii).

We finally prove the claimed orthogonal decomposition by showing that fix(S )⊥ =
lin
⋃
U∈S (IdH − U)(H).

For the inclusion “⊇” observe that part (i) implies P (IdH − U) = 0 for every U ∈
S . Since P−1({0}) = fix(S )⊥ is a closed linear subspace of H, we thus obtain
lin
⋃
U∈S (IdH − U)(H) ⊆ fix(S )⊥.

For the converse inclusion “⊆” pick f ∈ P−1({0}). For every ε > 0 we find by
(ii) elements U1, . . . , Um ∈ S and c1, . . . , cm ∈ [0, 1] with

∑m
j=1 cj = 1 such that

∥
∑m

i=1 ciUif∥ ≤ ε. But this means∥∥∥∥f − m∑
i=1

ci(IdH − Ui)f
∥∥∥∥ ≤ ε.

Therefore f is in the closure of the subspace lin
⋃
U∈S (IdH − U)(H).
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The abstract (and general) Theorem 3.1.5 implies the convergence of many different
“ergodic averages”. To make this precise, we introduce the notion of a net, gen-
eralizing the classical concept of a sequence, see also [Sin19, Section 4.2] for more
details.

A set I ̸= ∅ with a relation ≤ is a directed set if

(i) i ≤ i for every i ∈ I,
(ii) i1 ≤ i2 and i2 ≤ i3 for i1, i2, i3 ∈ I implies i1 ≤ i3, and

(iii) for all i1, i2 ∈ I there is i ∈ I with i1 ≤ i and i2 ≤ i.

Basic examples are N, Z, or R with their natural ordering, or the power set P(X)
of a set X equipped with set inclusion “⊆” as its relation.

A map I → Ω, i 7→ ωi from a directed set I into a set Ω is usually written as (ωi)i∈I
and is called a net in Ω. If Ω is a topological space, (ωi)i∈I is a net in Ω, and ω ∈ Ω
is some point, then we say, just as for sequences, that

(i) (ωi)i∈I converges to ω if for every open set O with ω ∈ O there is some i0 ∈ I
with xi ∈ O for all i ≥ i0. In this case, ω is called a limit of (ωi)i∈I .

(ii) ω is an accumulation point of (ωi)i∈I if for every open set O with ω ∈ O
and each i0 ∈ I there is an i ≥ i0 with ωi ∈ O.

In a Hausdorff space1 Ω, a net (ωi)i∈I can have at most one limit ω (see [Sin19,
Theorem 4.2.4], and we write limi∈I ωi := ω in this case.

Many well-known characterizations of topological notions in metric spaces transfer
over to topological spaces when one replaces the word “sequence” with “net”. For
example, a Hausdorff space Ω is compact2 precisely when every net in Ω has an
accumulation point (see, e.g., [Sin19, Theorems 4.2.10 and 5.1.17]).

The following definition uses the concept of nets in the context of the mean ergodic
theorem.

Definition 3.1.7. Let S ⊆ L (H) be a semigroup on a Hilbert space H. A net
(Vi)i∈I in L (H) is an ergodic net for S if for every f ∈ H we have

(i) Vif ∈ co {Uf | U ∈ S } for each i ∈ I, and

(ii) limi∈I Vi(f − Uf) = 0 for every U ∈ S .

We discuss some basic examples.

Examples 3.1.8. Let U ∈ L (H) with ∥U∥ ≤ 1 and consider the induced contrac-
tion semigroup SU = {Un | n ∈ N0} of Remark 3.1.4.

1Recall that a topological space Ω is a Hausdorff space if for distinct x, y ∈ Ω we can always
find open, disjoint subsets Ox, Oy ⊆ Ω with x ∈ Ox and y ∈ Oy.

2In this course, the term compact will always include the Hausdorff property.
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(i) The classical Cesàro means VN := 1
N

∑N−1
n=0 U

n for N ∈ N define an ergodic
net (VN)N∈N for SU : For f ∈ H we obtain by telescopic summing,

∥VN(f − Uf)∥ =
∥∥∥∥ 1

N

N−1∑
n=0

Unf − 1

N

N∑
n=1

Unf

∥∥∥∥ =
1

N
∥f − UNf∥ ≤ 2∥f∥

N

for every N ∈ N, hence limN→∞ ∥VN(f − Uf)∥ = 0. Again using telescopic
summing this implies limN→∞ ∥VN(f − Unf)∥ = 0 for every n ∈ N.

(ii) Turn N2 into a directed set by setting (N1,M1) ≤ (N2,M2) if M1 ≤ M2 for
(N1,M1), (N2,M2) ∈ N2. Similarly to (i), the means VN,M := 1

M

∑N+M−1
n=N Un

for (N,M) ∈ N2 define an ergodic net (VN,M)(N,M)∈N2 for SU .

(iii) If we reverse the order on (1,∞), we obtain that the Abel means Vr :=
(1 − 1/r)

∑∞
n=0 r

−nUn for r ∈ (1,∞) define an ergodic net (Vr)r∈(1,∞) for SU ,
see Exercise 3.3.

A general construction of ergodic nets involves so-called Følner nets of groups.
Here, for a subset A ⊆ G of a group G and x ∈ G we use the intuitive notation
Ax := {yx | y ∈ A}. Analogously, we introduce xA and A−1 (which will appear at
a later point).

Definition 3.1.9. For a group G call a net (Fi)i∈I of non-empty finite subsets of G
a (right) Følner net if limi∈I

|Fi ∆Fix|
|Fi| = 0 for every x ∈ G.

Simple examples for the group G = Z are the sequences (EN)N∈N and (FN)N∈N with
EN := {0, . . . , N − 1} and FN := {−N + 1, . . . , N − 1} for N ∈ N. We obtain the
following general result.

Proposition 3.1.10. Every abelian group G has a Følner net.

We first prove a helpful lemma.

Lemma 3.1.11. Let E ⊆ G be a non-empty finite subset of an abelian group G and
consider the sets En := {x1 · · ·xn | x1, . . . , xn ∈ E} for n ∈ N. For every r > 1
there is some n ∈ N with |En+1| ≤ r|En|.

Proof. We write N := |E| for the number of elements of E. For n ∈ N there are

p(n) :=

(
n+N − 1

n

)
=

(n+N − 1) · · · (n+ 1)

(N − 1)!

many possibilities to chose n elements out of N distinct elements with replacement
(see, e.g., [Bó06, Theorem 3.21]). This implies that the set En has at most p(n)
many elements for every n ∈ N (here we use that G is abelian!). Assuming that
there is some r > 1 such that |En+1| > r|En| for all n ∈ N, we obtain that

rn−1|E| < |En| ≤ p(n) for every n ∈ N.
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But this contradicts the fact that power functions with base greater than 1 grow
faster than any polynomial.

Proof of Proposition 3.1.10. Let I be the set of pairs (E,m) of non-empty finite
subsets E ⊆ G and elements m ∈ N. By setting

(E1,m1) ≤ (E2,m2) :⇔ E1 ⊆ E2 and m1 ≤ m2

for (E1,m1), (E2,m2) ∈ I, we turn I into a directed set. For every (E,m) ∈ I we
use Lemma 3.1.11 to find n(E,m) ∈ N with |En(E,m)+1| ≤ (1 + 1

m
)|En(E,m)| and set

FE,m := En(E,m). We claim that (FE,m)(E,m)∈I is then a Følner net.

So let x ∈ G and n ∈ N. We take (E,m) ∈ I with (E,m) ≥ ({x, x−1, 1}, n) and show
that |FE,m ∆FE,mx|/|FE,m| ≤ 2

n
. Since 1, x ∈ E, we have FE,mx = En(E,m)x ⊆ En(E,m)+1

and En(E,m) ⊆ En(E,m)+1. This implies

|FE,mx \ FE,m|
|FE,m|

≤ |E
n(E,m)+1 \ En(E,m)|
|En(E,m)|

=
|En(E,m)+1| − |En(E,m)|

|En(E,m)|
≤ 1

m
≤ 1

n
.

But, since multiplication from the right with x−1 is a bijection, we also have

|FE,m \ FE,mx|
|FE,m|

=
|(FE,m \ FE,mx)x−1|

|FE,m|
=
|(FE,mx−1) \ FE,m|

|FE,m|
≤ 1

n

by the same reasoning and the fact that x−1 ∈ E. Combining both estimates we
obtain the claim.

We now construct ergodic nets for certain group representations.

Definition 3.1.12. For a Hilbert space H and a group G we call a group homomor-
phism U : G→ U (H), x 7→ Ux to the group U (H) of unitary operators a unitary
representation of G on H.

We are mostly interested in the following class of examples.

Example 3.1.13. Let (X,T ) be a measure-preserving system. Then the Koopman
representation UT : Γ → U (L2(X)) is a unitary representation of the group Γ on
the Hilbert space L2(X).

Proposition 3.1.14. Let U : G → U (H) be a unitary representation of a group
G. If (Fi)i∈I is a Følner net for G, then by setting Vi := 1

|Fi|
∑

x∈Fi
Ux for i ∈ I we

obtain an ergodic net (Vi)i∈I for the image group {Ux | x ∈ G}.
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Proof. For y ∈ G and f ∈ H we have∥∥∥∥Vi(f − Uyf)∥∥∥∥ =
1

|Fi|

∥∥∥∥∑
x∈Fi

Uxf −
∑
x∈Fiy

Uxf

∥∥∥∥ =
1

|Fi|

∥∥∥∥ ∑
x∈Fi\Fiy

Uxf −
∑

x∈Fiy\Fi

Uxf

∥∥∥∥
≤ 1

|Fi|
∑

x∈Fi ∆Fiy

∥Uxf∥ ≤
|Fi∆Fiy|
|Fi|

· ∥f∥

for all i ∈ I which implies the claim.

Thus, by Proposition 3.1.10, ergodic nets always exist for (the image of) a unitary
representation of an abelian group. In Exercise 3.5 we even construct ergodic nets
for any abelian contraction semigroup S ⊆ L (H) on a Hilbert space H.

We now obtain the following consequence of Theorem 3.1.5.

Theorem 3.1.15. Let S ⊆ L (H) be a contraction semigroup on a Hilbert space
H, and P ∈ L (H) the orthogonal projection onto fix(S ). If (Vi)i∈I is an ergodic
net for S , then limi∈I Vif = Pf for every f ∈ H.

In the proof we use the following standard and very useful lemma of operator theory
(cf. [Haa14, Exercise 9.10]). It is an easy exercise when using linearity and applying
the triangle inequality.

Lemma 3.1.16. Let E and F be normed spaces, and further D ⊆ E such that the
linear hull lin D is dense in E. For (Ui)i∈I a net in L (E,F ) with supi∈I ∥Ui∥ <∞
and U ∈ L (E,F ) the following assertions are equivalent.

(i) (Uif)i∈I converges to Uf for every f ∈ D.

(ii) (Uif)i∈I converges to Uf for every f ∈ E.

Proof of Theorem 3.1.15. Take f ∈ H. Using the orthogonal decomposition from
3.1.5 we can reduce to the cases f ∈ fix(S ) and f ∈ lin

⋃
U∈S (IdH − U)(H).

In the first situation we have Uf = f for every U ∈ S . This implies co {Uf | U ∈
S } = {f}, and therefore also Vif = f for every i ∈ I by Definition 3.1.7 (i). This
implies limi∈I Vif = f .

For the second case, observe that for g ∈ H, we obtain by Definition 3.1.7 (ii) that
limi∈I Vi(IdH − U)g = 0. By Lemma 3.1.16 we obtain that limi∈I Vif = 0 for every
f ∈ lin

⋃
U∈S (IdH − U)(H).

In particular, by taking the Cesàro means (see Example 3.1.8 (ii)) of a Koopman
operator, we recover von Neumann’s Theorem 3.1.1. The following refinement of
the Poincaré’s recurrence theorem, Theorem 1.1.6, is an application.
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Corollary 3.1.17 (Khintchin’s refinement). Let T : Σ(X) → Σ(X) be a measure
algebra homomorphism on a probability space X and A ∈ Σ(X). Then

µX(A)
2 ≤ lim

N→∞

1

N

N−1∑
n=0

µX(A ∩ T n(A)).

In particular, if µX(A) > 0, there are infinitely many n ∈ N with µX(A∩T n(A)) > 0.

Proof. Write P for the orthogonal projection onto fix(UT ) = fix(SUT
) (cf. Remark

3.1.4). Since
∫
X
UTf =

∫
X
f for every f ∈ L2(X) (see Lemma 1.3.3), we obtain

µX(A) =

∫
X

1A = lim
N→∞

1

N

N−1∑
n=0

∫
X

Un
T1A =

∫
X

P1A = (P1A|1).

By the Cauchy-Schwarz inequality we thus have

µX(A)
2 ≤ ∥P1A∥22 · ∥1∥22 = (P1A|P1A) = (P ∗P1A|1A)

= (P1A|1A) = lim
N→∞

1

N

N−1∑
n=0

∫
X

Un
T1A · 1A = lim

N→∞

1

N

N−1∑
n=0

µX(A ∩ T n(A)).

3.2 Invariant Measures
In many examples the underlying maps of a concrete measure-preserving system
are not only measurable, but even continuous. Ergodic theory is therefore closely
related to the area of topological dynamics. We introduce its central objects. Here,
for a compact space K, write Homeo(K) for the group of all homeomorphisms
τ : K → K.

Definition 3.2.1. A topological dynamical system (K, τ) consists of a compact
space K ̸= ∅ and a group homomorphism τ : Γ→ Homeo(K), γ 7→ τγ.

As an important example we discuss a topological version of the Bernoulli shift. For
this, recall the product of topological spaces (see, e.g., [Sin19, Section 2.2]).

Definition 3.2.2. Let I be an index set and Ωi a topological space for every i ∈ I.
For a finite set {i1, . . . , im} ⊆ I and open sets Oj ⊆ Ωij for each j ∈ {1, . . . ,m} we
call

Z(i1, . . . , im;O1, . . . , Om) :=

{
(ωi)i∈I ∈

∏
i∈I

Ωi | ωij ∈ Oj for all j ∈ {1, . . . ,m}
}

an (open) cylinder set. The topology on
∏

i∈I Ωi generated by all such cylinder
sets is the product topology.
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Remark 3.2.3. The product topology is the smallest topology on the product∏
i∈I Ωi making all projection maps prj :

∏
i∈I Ωi → Ωj, (ωi)i∈I 7→ ωj for j ∈ I con-

tinuous (see [Sin19, Proposition 2.2.7]) A different way to think about this topology
is via convergence of nets (and, in particular, sequences): A net converges in the
product topology to some limit precisely when it converges in each component to
that limit (see [Sin19, Theorem 4.2.7]).

From now on, we equip the product of topological spaces with the product topology.
If we start with compact spaces, then we still obtain a compact space it that way
(see, e.g., [Sin19, Theorem 5.1.14]):

Theorem 3.2.4 (Tychonoff). Let I be an index set and Ki be a compact space for
every i ∈ I. Then the product space

∏
i∈I Ki is also compact.

With the help of Tychonoff’s Theorem we now obtain a topological version of Ex-
ample 2.1.8.

Example 3.2.5. Let K ̸= ∅ be a compact space, e.g., K = {0, . . . , k− 1} equipped
with the discrete topology (i.e., every set is open). Then τ : Γ→ Homeo(KΓ), γ 7→
τγ with τγ(xδ)δ∈Γ = (xδ+γ)δ∈Γ for (xδ)δ∈Γ ∈ KΓ and γ ∈ Γ defines a topological
dynamical system (KΓ, τ). In fact, with arguments similar as in Example 2.1.8,
we obtain that τγ : KΓ → KΓ is a homeomorphism for every γ ∈ Γ, and obviously
τγ1+γ2 = τγ1 ◦ τγ2 for all γ1, γ2 ∈ Γ.

We now transform topological dynamical systems into (concrete) measure-preserving
systems by adding a suitable probability measure. Recall that a probability measure
µ : B(K) → [0, 1] on the Borel σ-algebra B(K) of a compact space K is regular
if

µ(A) = sup{µ(L) | L ⊆ K compact with L ⊆ A}
= inf{µ(O) | O ⊆ K open with A ⊆ O}

for all A ∈ B(K), see [Rud87, Paragraph 2.4]. Note that, since we only consider
probability measures µ here, the second equality actually follows from the first by
considering complements. The Lebesgue measure on [0, 1] is an important example
of a regular Borel probability measure. We write P(K) for the set of all regular
Borel probability measures on a compact space K.

There is an equivalent way to look at regular Borel probability measures based on
the following observation: If µ : B(K)→ [0, 1] is a regular Borel probability measure
on a compact spaceK, every continuous function f : K → C is Borel measurable and
bounded, hence integrable with respect to µ. We therefore obtain an “integration
map”

φµ : C(K)→ C, f 7→
∫
K

f dµ.
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Moreover, φ = φµ is a linear map which is

(i) positive, i.e., φ(f) ≥ 0 for all f ∈ C(K) with f ≥ 0, and

(ii) unital, i.e., φ(1) = 1 for the constant one-function 1 : K → C.

The following representation result (see, e.g., [Rud87, Paragraph 2.3]) gives a con-
verse.

Theorem 3.2.6 (Riesz–Markov–Kakutani). Let K be a compact space. For every
unital, positive, linear map φ : C(K)→ C there is a unique µ ∈ P(K) with φ = φµ.

From now on, we identify for a compact space K each measure µ ∈ P(K) with the
corresponding linear form φµ. In particular, we write µ(f) := φµ(f) =

∫
K
f dµ for

f ∈ C(K) and µ ∈ P(K). In this way, every µ ∈ P(K) becomes a linear map from
C(K) to C, and since |

∫
K
f dµ| ≤ ∥f∥∞ for every f ∈ C(K), it is bounded, hence

an element of the dual Banach space C(K)′ with norm ∥µ∥ ≤ 1. This allows us to
topologize the set P(K).

On any normed space E the weak* topology is the smallest topology making all
point evaluations

evf : E
′ → C, φ 7→ φ(f)

for f ∈ E continuous.3 A net (φi)i∈I in E ′ converges to φ ∈ E ′ with respect to the
weak* topology precisely when the net (φi(f))i∈I converges to φ(f) in C for every
f ∈ E. We refer, e.g., to [Ped89, Sections 2.4 and 2.5] for more information on the
weak* topology. The following is an important consequence of Tychonoff’s theorem,
Theorem 3.2.4 above (see, e.g., [Ped89, Theorem 2.5.2]).

Theorem 3.2.7 (Banach–Alaoglu). Let E be a normed space. Then the dual unit
ball {φ ∈ E ′ | ∥φ∥ ≤ 1} is compact with respect to the weak* topology.

In the context of regular Borel probability measures, this yields:

Proposition 3.2.8. If K is a compact space, then P(K) is compact with respect to
the weak* topology.

Proof. In view of Theorem 3.2.7, since closed subsets of compact spaces are again
compact, it suffices to show that P(K) is a closed subset of the dual unit ball
B := {φ ∈ C(K)′ | ∥φ∥ ≤ 1}. However, we can write

P(K) = B ∩
⋂

f∈C(K)
f≥0

ev−1
f ([0,∞)) ∩ ev−1

1
({1}),

and this implies that P(K) is closed as an intersection of closed subsets.
3In other words, if E′ is considered as a subset of CE , the space of all maps from E to C, the

weak* topology is simply the product topology.
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To obtain measure-preserving systems from topological ones, we introduce the fol-
lowing definition.

Definition 3.2.9. Let (K, τ) be a topological dynamical system. A regular Borel
probability measure µ : B(K)→ [0, 1] is invariant if τγ is measure-preserving with
respect to µ for every γ ∈ Γ, i.e., µ(τ−1

γ (A)) = µ(A) for all Borel sets A ⊆ K. We
write P(K, τ) ⊆ P(K) for the set of all invariant probability measures.

Every invariant measure µ ∈ P(K, τ) of a topological dynamical system (K, τ)
allows us to construct a concrete measure-preserving system (K,B(K), µ, τ) (see
Definition 2.1.3), and then a measure-preserving system (K,B(K), µ, τ ∗) in the sense
of Definition 2.1.1.

For the following lemma notice that continuous maps between topological spaces are
Borel measurable (by Proposition 1.1.4 (i)).

Lemma 3.2.10. Let τ : K → L be a continuous map between compact spaces and
µ ∈ P(K). Then the push-forward measure τ∗µ : B(L)→ [0, 1], A 7→ µ(τ−1(A)) is a
regular Borel probability measure with

∫
K
f ◦ τ dµ =

∫
L
f dτ∗µ for all f ∈ C(L).

The proof is left as Exercise 3.7. This leads to the following characterization of
invariant measures.

Proposition 3.2.11. For a topological dynamical system (K, τ) and µ ∈ P(K) the
following assertions are equivalent.

(a) µ is invariant.

(b)
∫
K
f ◦ τγ dµ =

∫
K
f dµ for all f ∈ C(K) and γ ∈ Γ.

Does every topological dynamical system admit an invariant measure? To answer
this question, we first introduce the following concept closely related to the notion
of ergodic nets from the previous section.

Definition 3.2.12. For a topological dynamical system (K, τ) we call a net (µi)i∈I in
P(K) asymptotically invariant if limi∈I

∫
K
f−(f ◦τγ) dµi = 0 for every f ∈ C(K)

and each γ ∈ Γ.

Example 3.2.13. Let (Fi)i∈I be a Følner net for the group Γ. Then for a topological
dynamical system (K, τ) and any µ ∈ P(K) (e.g., µ = δx a point measure for some
x ∈ K), set µi := 1

|Fi|
∑

γ∈Fi
(τγ)∗µ for i ∈ I. One can check, with similar arguments

as in the proof of Proposition 3.1.14, that (µi)i∈I is asymptotically invariant, see
Exercise 3.8.

Proposition 3.2.14. Let (K, τ) be a topological dynamical system. Every weak*
accumulation point µ of an asymptotically invariant net (µi)i∈I in P(K) is invariant.
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Proof. Take γ ∈ Γ and f ∈ C(K). For ε > 0 we find some i0 ∈ I with |
∫
K
f − (f ◦

τγ) dµi| < ε/3 for each i ≥ i0. By the definition of the weak* topology, the set

O := {ν ∈ P(K) | |µ(f)− ν(f)| < ε/3} ∩ {ν ∈ P(K) | |µ(f ◦ τγ)− ν(f ◦ τγ)| < ε/3}

is an open set containing µ. By the definition of accumulation points, we thus find
some i ≥ i0 with µi ∈ O. But then |µ(f)− µ(f ◦ τγ)| ≤ ε by the triangle inequality.
Thus, µ(f) = µ(f ◦ τγ), and µ is invariant by Proposition 3.2.11.

Corollary 3.2.15 (Krylov–Bogolyubov). Every topological dynamical system (K, τ)
has an invariant measure µ ∈ P(K, τ).

Proof. By Proposition 3.1.10 and Example 3.2.13 the system (K, τ) has an asymp-
totically invariant net (µi)i∈I in P(K). By Proposition 3.2.8 the net (µi)i∈I has
a weak* accumulation point µ ∈ P(K), and then µ is invariant by Proposition
3.2.14.
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3.3 Comments and Further Reading
Von Neumann proved his mean ergodic theorem in [vN32b], but in a completely dif-
ferent way than what is presented here. His work was a mathematical formalization
of the ergodic hypothesis from statistical mechanics going back to Ludwig Boltz-
mann, see, e.g., [Bad06] for more information. Even though not part of the lecture,
we also mention the pointwise ergodic theorem of George Birkhoff showing point-
wise almost everywhere convergence of the Cesàro means 1

N

∑N−1
n=0 U

n
τ f (instead of

L2-convergence), see [Bir31]. Both results had a tremendous impact on the further
development of mathematical ergodic theory, but also caused a dispute between von
Neumann and Birkhoff - more on this can be read, e.g., in [Ber04].

The “abstract mean ergodic theorem” of this lecture is a special case of a general
result by Alaoglu and Birkhoff, see [AB40]. Our exposition is based on [EFHN15,
Supplement of Chapter 8]. There are many works on mean ergodic theorems for
operators and operator semigroups on Banach spaces, see, e.g., [Nag73], [Sat78],
[Kre85, Chapter 2], [EFHN15, Chapter 8], [Sch13], and [Kre18].

Groups having a Følner net are called amenable. There are many equivalent char-
acterizations of this property, and interesting examples, see, e.g., [Pat88], [Run02],
[CSD21], and [Jus22]. Our proof of the fact that abelian groups are amenable re-
lies on the property that these groups have “subexponential growth”, see [CSD21,
Corollary 14.7] or [Jus22, Subsection 2.6].

An introduction to topological dynamics is given in [Aus88], see also the classical
monograph [GH55], as well as [Bro79] and [dV93]. Here we are mostly interested
in constructing measure-preserving systems from topological ones. This will be a
crucial procedure in the next lecture.
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3.4 Exercises
Exercise 3.1. A sequence (an)n∈N of complex numbers is Cesàro convergent to
a ∈ C if limN→∞

1
N

∑N
n=1 an = a, and in this case a is the Cesàro limit of (an)n∈N.

(i) Show that for every sequence of real numbers (an)n∈N the inequalities

lim inf
n→∞

an ≤ lim inf
N→∞

1

N

N∑
n=1

an ≤ lim sup
N→∞

1

N

N∑
n=1

an ≤ lim sup
n→∞

an

hold.

(ii) Show that if a sequence (an)n∈N of complex numbers converges to a ∈ C, then
it is also Cesàro convergent to a.

(iii) Let an = λn for n ∈ N, where λ ∈ C. Determine (depending on λ), if (an)n∈N
is Cesàro convergent, and in this case compute the Cesàro limit.

(iv) Give an example of a bounded sequence in C which is not Cesàro convergent.

(v) Show that a sequence (an)n∈N of complex numbers converges if and only if
each subsequence of (an)n∈N is Cesàro convergent.

Exercise 3.2. Give an example of a Banach space E, a bounded linear opera-
tor U ∈ L (E) with ∥U∥ ≤ 1, and an element f ∈ E such that the sequence
( 1
N

∑N−1
n=0 U

nf)N∈N does not converge in E.

Exercise 3.3. Let U ∈ L (H) be a bounded linear operator on a Hilbert space
H with ∥U∥ ≤ 1 and SU the generated contraction semigroup from Remark 3.1.4.
Consider the reversed order on (1,∞) and define

Vr := (1− 1/r)
∞∑
n=0

r−nUn = lim
N→∞

(1− 1/r)
N∑
n=0

r−nUn

for r ∈ (1,∞) where the limit exists with respect to the operator norm. Show that
(Vr)r∈(1,∞) is an ergodic net for SU .

Exercise 3.4. Let (Fi)i∈I be a Følner net for Γ. Show that for a measure-preserving
system (X,T ) the following assertions are equivalent.

(a) (X,T ) is ergodic.

(b) For all f ∈ L2(X) we have limα
1

|Fα|
∑

γ∈Fα
UTγf = (

∫
X
f) · 1 in L2(X).

Exercise 3.5. Let ∅ ̸= S ⊆ L (H) be an abelian contraction semigroup on a
Hilbert space H, i.e., UV = V U for all U, V ∈ S . Equip the convex hull I := coS
with the relation ≤ defined by

U ≤ V :⇔ U = V or there is W ∈ I with V = WU
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for U, V ∈ I. Show the following assertions.

(i) I is a directed set.

(ii) The map I → L (H), V 7→ V is an ergodic net.
Hint: Note that 1

N

∑N−1
n=0 U

n ∈ I for every N ∈ N and U ∈ S .

Exercise 3.6. A topological dynamical system (K, τ) is topologically transitive
if for all non-empty open subsets O1, O2 ⊆ K there is some γ ∈ Γ such that τ−1

γ (O1)∩
O2 ̸= ∅. Show that if Γ is an infinite abelian group, then for any non-empty compact
space K the shift (KΓ, τ) from Example 3.2.5 is topologically transitive.

Exercise 3.7. Prove Lemma 3.2.10.

Exercise 3.8. Consider a Følner net (Fi)i∈I for the group Γ, a topological dynamical
system (K, τ), and µ ∈ P(K). Show that the net (µi)i∈I with µi := 1

|Fi|
∑

γ∈Fi
(τγ)∗µ

for i ∈ I is asymptotically invariant.
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Lecture 4

We continue the study of invariant measures started in the previous chapter and
characterize so-called ergodic measures. With the established tools, we then build
the bridge between ergodic theory and additive combinatorics alluded to in the
first lecture. As a first application we prove a result on patterns in subsets of the
integers.

4.1 Ergodic Measures

In the previous lecture we have seen that we can always turn a topological dynamical
system into a measure-preserving one via an invariant measure. But can we also
achieve that these systems are ergodic (see Definition 2.1.9)?

Definition 4.1.1. Let (K, τ) be a topological dynamical system. An invariant
measure µ ∈ P(K, τ) is an ergodic measure if the induced measure-preserving
system (K,B(K), µ, τ ∗) is ergodic.

Before we address the problem of existence of such measures, we derive an important
characterization. It relies on the following simple observation. Recall from Section
3.2 that for any compact space K we identify regular Borel probability measures
µ : B(K) → [0, 1] with the induced positive, unital, linear functionals C(K) →
C, f 7→

∫
K
f dµ. In particular, we can view P(K) as a subset of the dual space

C(K)′.

Proposition 4.1.2. (i) For any compact space K, the set of regular Borel prob-
ability measures P(K) is a convex and weak* compact subset of C(K)′.

(ii) For any topological dynamical system (K, τ), the set of invariant regular Borel
probability measures P(K, τ) is a convex and weak* compact subset of C(K)′.

Proof. For part (i), recall that we have shown compactness with respect to the weak*
topology in Proposition 3.2.8. To see that P(K) is convex, take µ1, µ2 ∈ P(K) and
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t ∈ [0, 1]. The linear functional tµ1 + (1− t)µ2 : C(K)→ C satisfies

(tµ1 + (1− t)µ2)(f) = tµ1(f) + (1− t)µ2(f) ≥ 0

for every f ∈ C(K) with f ≥ 0. Moreover, (tµ1 + (1 − t)µ2)(1) = 1. Thus,
tµ1 + (1 − t)µ2 defines an element of P(K). Using Proposition 3.2.11, part (ii)
readily follows from (i).

Remark 4.1.3. For a compact space K and µ1, µ2 ∈ P(K), one can also define the
convex combination tµ1 + (1− t)µ2 for t ∈ [0, 1] directly as a measure (instead of a
linear functional C(K)→ C), see Exercise 4.1 below.

We are interested in elements of a convex set C which cannot be written as a non-
trivial convex combination of two other points in C.

Definition 4.1.4. For a convex subset C ⊆ E of a (real or complex) vector space
E we call v ∈ E an extreme point if the identity tv1 + (1− t)v2 = v for t ∈ (0, 1)
and v1, v2 ∈ C implies v = v1 = v2. We write exC for the set of all extreme points
of the set C.

The definition is illustrated by the following two very basic examples.

Examples 4.1.5. (i) Consider the unit interval C := [0, 1] ⊆ C. Then the bound-
ary points 0, 1 are the extreme points of C.

(ii) Consider the triangle C := {r + si | r, s ≥ 0 with r + s ≤ 1} ⊆ C. One can
check that the extreme points of C are precisely the corners 0, 1, i ∈ C.

We now prove a characterization of ergodic measures.

Proposition 4.1.6. For a topological dynamical system (K, τ) and an invariant
measure µ ∈ P(K, τ) the following assertions are equivalent.

(a) µ is an ergodic measure.

(b) µ is an extreme point of P(K, τ).

We use the following well-known fact for regular Borel probability measures (see,
e.g., [Rud87, Theorem 3.14]).

Lemma 4.1.7. For every compact space K, each µ ∈ P(K), and any p ∈ [1,∞), the
natural map C(K)→ Lp(K,B(K), µ) sending a function f ∈ C(K) to its equivalence
class in Lp(K,B(K), µ) has dense range.

Proof of Proposition 4.1.6. We first prove the implication “(a) ⇒ (b)”. So assume
that µ is an ergodic measure, and recall that by Corollary 2.2.14 this means that
the fixed space

fix(Uτ∗) = {f ∈ L2(K,B(K), µ) | f ◦ τγ = f for every γ ∈ Γ}
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only consists of (equivalence classes of) constant functions c · 1 for c ∈ C. If µ =
tµ1 + (1− t)µ2 for µ1, µ2 ∈ P(K, τ) and t ∈ (0, 1), then∣∣∣∣∫

K

f dµ1

∣∣∣∣ ≤ ∫
K

|f | dµ1 ≤
1

t

∫
K

|f | dµ =
1

t
∥f∥L1(K,B,µ) ≤

1

t
∥f∥L2(K,B,µ)

for every f ∈ C(K). In particular, if we write I : C(K) → L2(K,B(K), µ) for the
map from Lemma 4.1.7 for p = 2, we obtain the following implication: Whenever
If1 = If2, hence I(f1 − f2) = 0, for f1, f2 ∈ C(K), we have

∫
K
f1 dµ1 =

∫
K
f2 dµ1.

We therefore obtain a (well-defined!) linear functional

φ : I(C(K))→ C, If 7→
∫
K

f dµ1.

Moreover, φ is bounded with ∥φ∥ ≤ 1
t
. Since I(C(K)) is dense in L2(K,B(K), µ) by

Lemma 4.1.7, we can apply Proposition A.1.1 to uniquely extend φ to a bounded
linear functional φ : L2(K,B(K), µ)→ C. By the Riesz-Fréchet representation the-
orem (see Theorem A.2.3), we therefore find a unique element g ∈ L2(K,B(K), µ)
with ∫

K

f dµ1 = φ(f) = (f |g)L2(K,B(K),µ) =

∫
K

f · g dµ

for all f ∈ C(K).

We show that g ∈ fix(Uτ∗). Again using that I(C(K)) is dense in L2(K,B(K), µ),
it suffices to show that (f |g − g ◦ τγ) = 0 for every γ ∈ Γ and for each f ∈ C(K)
since this implies (g − g ◦ τγ|g − g ◦ τγ) = 0 by approximation and continuity of the
inner product. But, since both µ and µ1 are invariant, we obtain from Proposition
1.1.4 that

(f |g − g ◦ τγ) =
∫
K

f · g dµ−
∫
K

f · g ◦ τγ dµ =

∫
K

f · g dµ−
∫
K

(f ◦ τ−1
γ ) · g dµ

=

∫
K

f dµ1 −
∫
K

f ◦ τ−γ dµ1 = 0

for every f ∈ C(K) and γ ∈ Γ.

By ergodicity of µ we conclude that g = c · 1 for some c ∈ C. By choice of g, this
means that

∫
K
f dµ1 = c ·

∫
K
f dµ for all f ∈ C(K). Taking f = 1, we see that

c = 1, and hence µ = µ1. But then µ = tµ + (1 − t)µ2 automatically also yields
µ = µ2, finishing the proof of “(a) ⇒ (b)”.

We now show the converse implication “(b) ⇒ (a)” by contraposition. If µ is not
ergodic, we find some A ∈ B(K) with 0 < µ(A) < 1 such that µ(A∆ τ−1

γ (A)) = 0
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for each γ ∈ Γ. Then

µ1 : C(K)→ C, f 7→ 1

µ(A)

∫
A

f dµ,

µ2 : C(K)→ C, f 7→ 1

µ(K \ A)

∫
K\A

f dµ

are unital, positive, linear functionals and hence define elements of P(K). Since

µ1(f ◦ τγ) =
1

µ(A)

∫
K

1A · (f ◦ τγ) dµ =
1

µ(A)

∫
K

1τ−1
γ (A) · (f ◦ τγ) dµ

=
1

µ(A)

∫
K

(1A · f) ◦ τγ dµ =
1

µ(A)

∫
K

1A · f dµ = µ1(f)

for every f ∈ C(K), we conclude that µ1 ∈ P(K, τ) (see Proposition 3.2.11). Simi-
larly, µ2 ∈ P(K, τ). Moreover, for t := µ(A) ∈ (0, 1) we have µ = tµ1 + (1− t)µ2.

To finish the proof we check that µ ̸= µ1 which shows that µ is not an extreme point
of P(K, τ). Since 0 < µ(A) < 1 we have µ(A)1 ̸= 1A in L2(K,B(K), µ). Again using
Lemma 4.1.7, we find some f ∈ C(K) with 0 ̸= (f |µ(A)1−1A) =

∫
K
(µ(A)f−1Af).

But this means µ(f) ̸= µ1(f).

Proposition 4.1.6 is particularly interesting when combined with the following spe-
cial case of the Krein-Milman theorem from functional analysis, see, e.g., [Ped89,
Theorem 2.5.4].

Theorem 4.1.8. Let E be a normed space. If C is a weak* compact convex subset
of the dual E ′, then the convex hull of exC is weak* dense in C.

We obtain the following consequence.

Proposition 4.1.9. Every topological dynamical system (K, τ) has an ergodic mea-
sure µ ∈ P(K, τ).

Proof. By Corollary 3.2.15 we know that P(K, τ) ̸= ∅. Since P(K, τ) is weak*
compact and convex, we can apply Theorem 4.1.8 to see that, in particular, the set
P(K, τ) has some extreme point µ ∈ P(K, τ). By Proposition 4.1.6 we obtain that
this µ is ergodic.

4.2 Furstenberg’s Correspondence Principle
With these concepts and tools at hand, we are now ready to establish a bridge
between ergodic theory and combinatorial number theory. This will help us to find
structure in “large” subsets of the integers, e.g., the following patterns.
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Definition 4.2.1. For k ∈ N a set of the form {a, a+d, . . . , a+(k−1)d} for a, d ∈ N
is called an arithmetic progression of length k.

One of the early questions on arithmetic progressions from so-called Ramsey Theory
is the following: Assume that we color the natural numbers in two different colors,
say, red and blue. Is there, for any k ∈ N, an arithmetic progression of length k
which is monochromatic, i.e., consists entirely of red or entirely of blue numbers? In
some simple cases (e.g., there are only finitely many red numbers; or we color all odd
numbers red, and even numbers blue), the answer is evidently positive. However,
the general case is surprisingly difficult, and was first solved by Bartel Leendert van
der Waerden in 1927, even in a stronger version:

Theorem 4.2.2 (van der Waerden). Assume that N = A1 ∪ · · · ∪ Am for some
m ∈ N. Then there is j ∈ {1, . . . ,m} such that Aj contains arithmetic progressions
of arbitrary (finite) length.

In 1975 Endre Szemerédi proved a stronger result for “asymptotically large” subsets.
Before we recall his Theorem 1.1.8 from Lecture 1, we introduce the following impor-
tant concept. Here, for a bounded net (ri)i∈I of real numbers, we write lim supi∈I ri
for the largest and lim infi∈I ri for the smallest accumulation point of (ri)i∈I (which,
as for sequences, always exist).

Definition 4.2.3. Let (Fi)i∈I be a Følner net (see Definition 3.1.9) for the abelian
group Γ. For a subset A ⊆ Γ we call

d(Fi)i∈I
(A) := lim sup

i∈I

|A ∩ Fi|
|Fi|

and d(Fi)i∈I
(A) := lim inf

i∈I

|A ∩ Fi|
|Fi|

the upper density and lower density of A with respect to (Fi)i∈I , respectively.

A concrete example is the following.

Example 4.2.4. Given a set A ⊆ N, we usually consider the natural upper and
lower density

d(A) := lim sup
N→∞

|A ∩ {1, . . . , N}|
N

and d(A) := lim inf
N→∞

|A ∩ {1, . . . , N}|
N

with respect to the Følner net (FN)N∈N for Γ = Z given by FN := {1, . . . , N} for
N ∈ N.

The following lemma collects some basic facts about upper and lower densities. The
proof is left as Exercise 4.5.

Lemma 4.2.5. Let (Fi)i∈I be a Følner net for the abelian group Γ. Then the fol-
lowing assertions hold for A,B ⊆ Γ.

(i) 0 ≤ d(Fi)i∈I
(A) ≤ d(Fi)i∈I

(A) ≤ 1.
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(ii) d(Fi)i∈I
(∅) = d(Fi)i∈I

(∅) = 0 and d(Fi)i∈I
(Γ) = d(Fi)i∈I

(Γ) = 1.

(iii) d(Fi)i∈I
(A) ≤ d(Fi)i∈I

(B) and d(Fi)i∈I
(A) ≤ d(Fi)i∈I

(B) if A ⊆ B.

(iv) d(Fi)i∈I
(A) + d(Fi)i∈I

(Γ \ A) = 1.

(v) d(Fi)i∈I
(A ∪B) ≤ d(Fi)i∈I

(A) + d(Fi)i∈I
(B).

(vi) If d(Fi)i∈I
(B) = 1, then

d(Fi)i∈I
(A ∩B) = d(Fi)i∈I

(A) and d(Fi)i∈I
(A ∩B) = d(Fi)i∈I

(A).

(vii) If d(Fi)i∈I
(B) = 0, then

d(Fi)i∈I
(A ∪B) = d(Fi)i∈I

(A) and d(Fi)i∈I
(A ∪B) = d(Fi)i∈I

(A).

We now restate Theorem 1.1.8 as follows.

Theorem 4.2.6 (Szemerédi). Let A ⊆ N with d(A) > 0. Then A contains arith-
metic progressions of arbitrary (finite) length.

Remark 4.2.7. Notice that if N = A1∪· · ·∪Am for some m ∈ N, then parts (ii) and
(v) of Lemma 4.2.5 imply that there is some j ∈ {1, . . . ,m} with d(Aj) > 0. Thus,
Szemerédi’s Theorem 4.2.6 is indeed stronger than van der Waerden’s Theorem 4.2.2.

Let us now discuss how to approach these results via dynamical systems following
ideas of Hillel Furstenberg from 1977. For any abelian group Γ (e.g., Γ = Z) and
the discrete space {0, 1} consider the corresponding shift system ({0, 1}Γ, τ) from
Example 3.2.5. Then any subset A ⊆ Γ defines a point 1A := (δγ,A)γ∈Γ of this system
via

δγ,A :=

{
1 for γ ∈ A,
0 for γ /∈ A.

We consider its “orbit closure” K := {τγ(1A) | γ ∈ Γ} ⊆ {0, 1}Γ with the subspace
topology. For each γ ∈ Γ we have τγ(K) = K, and hence τγ restricts to a home-
omorphism σγ := (τγ)|K : K → K. We therefore obtain a topological dynamical
system (K, σ) via Γ→ Homeo(K), γ 7→ σγ.

By definition of the product topology, the “cylinder set”

B := {(aγ)γ∈Γ ∈ K | a0 = 1}

is both open and closed in K. We can use B to describe the elements of A ⊆ Γ: For
γ ∈ Γ we have γ ∈ A precisely when δγ,A = 1. But this means

γ ∈ A ⇔ σγ(1A) ∈ B.
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Assume now that, for some γ1, . . . , γk ∈ Γ, we knew that

σ−1
γ1
(B) ∩ · · · ∩ σ−1

γk
(B) ̸= ∅.

Since this is an open set, and {σγ(1A) | γ ∈ Γ} is dense in K, we then find some
γ ∈ Γ with σγ(1A) ∈ σ−1

γ1
(B)∩ · · · ∩ σ−1

γk
(B). But this means γ + γ1, . . . , γ + γk ∈ A.

In the special case of Γ = Z and γj = (j − 1)d for j ∈ {1, . . . , k} and some d ∈ N,
we thus have a, a + d, · · · , a + (k − 1)d ∈ A for a := γ, and thus an arithmetic
progression of length k in A.

So far we have not taken the upper density of the subset A ⊆ Γ into account. We
will do so now to construct a measure-preserving system.

Theorem 4.2.8 (Furstenberg’s Correspondence Principle I). Let (Fi)i∈I be a Følner
net for the abelian group Γ, and let A ⊆ Γ with d(Fi)i∈I

(A) > 0. Then there is an
ergodic measure-preserving system (X,T ) and B ∈ Σ(X) with µX(B) > 0 having
the following property: If µX(Tγ1(B)∩· · ·∩Tγk(B)) > 0 for some γ1, . . . , γk ∈ Γ and
k ∈ N, then γ + γ1, . . . , γ + γk ∈ A for some γ ∈ Γ.

If we forego ergodicity of the measure-preserving system (X,T ), we can even give
an estimate on “how many” γ ∈ Γ satisfy γ + γ1, . . . , γ + γk ∈ A, or, equivalently,
γ ∈ A− γ1, . . . , A− γk.

Theorem 4.2.9 (Furstenberg’s Correspondence Principle II). Let (Fi)i∈I be a Føl-
ner net for the abelian group Γ and A ⊆ Γ. Then there is a measure-preserving
system (X,T ) and B ∈ Σ(X) with µX(B) = d(Fi)i∈I

(A) such that

µX(Tγ1(B) ∩ · · · ∩ Tγk(B)) ≤ d(Fi)i∈I
((A− γ1) ∩ · · · ∩ (A− γk))

for all γ1, . . . , γk ∈ Γ and k ∈ N.

We prove both results at once.

Proof of Theorems 4.2.8 and 4.2.9. Take the topological dynamical system (K, σ)
as well as the open and closed subset B ⊆ K from above. Then the characteristic
function 1B : K → C of B is continuous, and for γ ∈ Γ we have

γ ∈ A ⇔ σγ(1A) ∈ B ⇔ (1B ◦ σγ)(1A) = 1.

We can reformulate this condition once more by using pushforward measures of the
point measure δ1A

: C(K)→ C, f 7→ f(1A). For γ ∈ Γ we have

γ ∈ A ⇔ ((σγ)∗δ1A
)(1B) = 1.

This allows us to write
|(A− γ1) ∩ · · · ∩ (A− γk) ∩ Fi|

|Fi|
=

1

|Fi|
∑
γ∈Fi

((σγ)∗δ1A
)(1σ−1

γ1
(B)∩···∩σ−1

γk
(B))



58 LECTURE 4.

for all i ∈ I and γ1, . . . , γk ∈ Γ. In particular, we obtain that

d(Fi)i∈I
(A) = lim sup

i∈I

1

|Fi|
∑
γ∈Fi

((σγ)∗δ1A
)(1B).

By the definition of accumulation points, we find for every (i, n) ∈ I × N some
j(i, n) ∈ I with j(i, n) ≥ i and∣∣∣∣d(Fi)i∈I

(A)− 1

|Fj(i,n)|
∑

γ∈Fj(i,n)

((σγ)∗δ1A
)(1B)

∣∣∣∣ < 1

n
.

Equip I×N with the product direction, i.e., (i1, n1) ≤ (i2, n2) if i1 ≤ i2 and n1 ≤ n2

for (i1, n1), (i2, n2) ∈ I × N. Then (1/|Fj(i,n)|
∑

γ∈Fj(i,n)
((σγ)∗δ1A

))(i,n)∈I×N is a net1 in
P(K) with

lim
(i,n)∈I×N

1

|Fj(i,n)|
∑

γ∈Fj(i,n)

((σγ)∗δ1A
)(1B) = d(Fi)i∈I

(A).

Using the assumption that (Fi)i∈I is a Følner net, we obtain that this net is asymp-
totically invariant (as in Example 3.2.13). By compactness of P(K) (see Propo-
sition 3.2.8) it has a weak* accumulation point µ ∈ P(K), and by Proposition
3.2.14 we obtain that µ is invariant. By definition of the weak* topology, this
implies that also µ(f) is an accumulation point of the net of complex numbers
(1/|Fj(i,n)|

∑
γ∈Fj(i,n)

((σγ)∗δ1A
)(f))(i,n)∈I×N for every f ∈ C(K), and, in particular, we

have

µ(B) = µ(1B) = lim
(i,n)∈I×N

1

|Fj(i,n)|
∑

γ∈Fj(i,n)

((σγ)∗δ1A
)(1B) = d(Fi)i∈I

(A)

for f = 1B. Again using the definition of accumulation points, for f ∈ C(K), i0 ∈ I
and ε > 0 we find some index (i, n) ∈ I × N satisfying (i, n) ≥ (i0, 1) as well as
|1/|Fj(i,n)|

∑
γ∈Fj(i,n)

((σγ)∗δ1A
)(f)−µ(f)| < ε. But, as j(i, n) ≥ i ≥ i0, this shows that

µ(f) is also an accumulation point of the “original net” (1/|Fi|
∑

γ∈Fi
((σγ)∗δ1A

)(f))i∈I
for every f ∈ C(K). Taking f = 1σ−1

γ1
(B)∩···∩σ−1

γk
(B) for γ1, . . . , γk ∈ Γ, we therefore

have

lim sup
i∈I

|(A− γ1) ∩ · · · ∩ (A− γk) ∩ Fi|
|Fi|

= lim sup
i∈I

1

|Fi|
∑
γ∈Fi

((σγ)∗δ1A
)(f)

≥ µ(f) =

∫
K

1σ−1
γ1

(B)∩···∩σ−1
γk

(B) dµ,

1Readers familiar with the concept of nets will observe that we have constructed a subnet,
which converges on 1B to the limit superior d(Fi)i∈I

(A). Working with the known relation between
subnets and accumulation points, one can slightly shorten the proof.
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and thus

d(Fi)i∈I
((A− γ1) ∩ · · · ∩ (A− γk)) ≥ µ(σ−1

γ1
(B) ∩ · · · ∩ σ−1

γk
(B)).

With the induced measure-preserving system (X,T ) := (K,B(K), µ, σ∗) we thus
obtain Theorem 4.2.9.

To construct an ergodic measure-preserving system as in Theorem 4.2.8, assume
that d := d(Fi)i∈I

(A) > 0. Then the set

O := {ν ∈ P(K, σ) | ν(1B) > d/2}

is open in P(K, σ) with respect to the weak* topology and, since µ ∈ O, also non-
empty. By the Krein–Milman Theorem 4.1.8 and Proposition 4.1.6 we find a convex
combination

∑r
i=1 tiµi ∈ O of ergodic measures µi ∈ P(K, σ) for i ∈ {1, . . . , r}, i.e.,

ti ∈ [0, 1] for i ∈ {1, . . . , r} with
∑r

i=1 ti = 1. By the Pigeonhole principle, there
has to be some i ∈ {1, . . . , r} with µi(B) > d

2
> 0. We set ν := µi and claim

that (X,T ) := (K,B(K), ν, σ∗) gives us a measure-preserving system as in Theorem
4.2.8. Indeed, if for γ1, . . . , γk ∈ Γ we have ν(Tγ1(B) ∩ · · · ∩ Tγk(B)) > 0, then, in
particular, σ−1

γ1
(B) ∩ · · · ∩ σ−1

γk
(B) = Tγ1(B) ∩ · · · ∩ Tγk(B) ̸= ∅. By the preliminary

discussion (see page 57), we then find some γ ∈ Γ with γ + γ1, . . . , γ + γk ∈ A.

Consequently, to prove Szemerédi’s Theorem 4.2.6 it is sufficient to check that for
every measure-preserving system (X,T ) over Γ = Z, every B ∈ Σ(X) with µX(B) >
0, and each k ∈ N, we find some n ∈ N with

µX(B ∩ T n(B) ∩ · · · ∩ T kn(B)) > 0,

cf. Theorem 1.1.7 from Lecture 1. The following result shows even more.

Theorem 4.2.10 (Furstenberg). Let (X,T ) be a measure-preserving system over
Γ = Z and f ∈ L∞(X) with f ≥ 0,

∫
X
fdµX > 0. For every k ∈ N we have

lim inf
N→∞

1

N

N−1∑
n=0

∫
X

f · Un
T f · · ·Ukn

T f > 0.

Taking f = 1B gives, in particular, the desired multiple recurrence statement.

It will still take some time until we are in the position to give a proof of Theorem
4.2.10. We conclude the lecture with a different application of the correspondence
principle instead.

Theorem 4.2.11 (Schur). Assume that N = A1 ∪ · · · ∪Am for some m ∈ N. Then
there are j ∈ {1, . . . ,m} and a, b ∈ N such that a, b, a+ b ∈ Aj.
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The proof discussed here is based on a “coloring trick” by Vitaly Bergelson and uses
the following lemma.

Lemma 4.2.12. Let A ⊆ Nd for some d ∈ N and consider the Følner net (FN)N∈Nd

for Zd given by FN := {1, . . . , N1} × · · · × {1, . . . , Nd} for N = (N1, . . . , Nd) ∈ Nd

where Nd is equipped with the componentwise direction. Then

d
({
n ∈ N | d(FN )

N∈Nd
(A ∩ (A− (n, . . . , n))) > 0

})
≥ d(FN )

N∈Nd
(A)2.

Proof. We abbreviate n⃗ := (n, . . . , n) ∈ Nd for n ∈ N. For Γ = Zd and the Følner
net (FN)N∈Nd choose a measure-preserving system (X,T ) as in Theorem 4.2.9. By
Corollary 3.1.17 applied to the measure algebra homomorphism T(1,...,1) : Σ(X) →
Σ(X) we obtain

d(FN )
N∈Nd

(A)2 = µX(B)2 ≤ lim
M→∞

1

M

M∑
n=1

µX(B ∩ T(n,...,n)(B))

≤ lim inf
M→∞

1

M

M∑
n=1

d(FN )
N∈Nd

(A ∩ (A− n⃗))

≤ lim inf
M→∞

|{n ∈ {1, . . . ,M} | d(FN )
N∈Nd

(A ∩ (A− n⃗)) > 0}|
M

.

Proof of Theorem 4.2.11. By relabeling we assume that there is some d ∈ {1, . . . ,m}
such that d(Ai) > 0 for i ∈ {1, . . . , d} and d(Ai) = 0 for i ∈ {d+1, . . . ,m}. Now let
(FN)N∈Nd be the Følner net from Lemma 4.2.12. It is an easy exercise to check that
the product set A := A1×· · ·×Ad ⊆ Nd satisfies d(FN )

N∈Nd
(A) = d(A1) · · · d(Ad) > 0.

In particular,

c := d
({
n ∈ N | d(FN )

N∈Nd
(A ∩ (A− (n, . . . , n))) > 0

})
> 0

by Lemma 4.2.12. On the other hand,

d(A1 ∪ · · · ∪ Ad) = 1− d(N \ (A1 ∪ · · · ∪ Ad)) ≥ 1− d(Ad+1 ∪ · · · ∪ Am) ≥ 1

by Lemma 4.2.5 (iii), (iv), and (v). By Lemma 4.2.5 (vi) this implies

d
(
(A1 ∪ · · · ∪ Ad) ∩

{
n ∈ N | d(FN )

N∈Nd
(A ∩ (A− (n, . . . , n))) > 0

})
= c > 0.

In particular, we find some j ∈ {1, . . . , d} and a ∈ Aj with

0 < d(FN )
N∈Nd

(A ∩ (A− (a, . . . , a))) = d(A1 ∩ (A1 − a)) · · · d(Ad ∩ (Ad − a)).

But then d(Aj ∩ (Aj − a)) > 0, and therefore we find b ∈ Aj with a+ b ∈ Aj. Hence
a, b, a+ b ∈ Aj, and we are done.
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Remark 4.2.13. Notice that Theorem 4.2.11 does not have a straightforward gen-
eralization to a “density version”: If A ⊆ N is the set of all odd numbers, then
d(A) = d(A) = 1

2
, but clearly a+ b /∈ A for all a, b ∈ A.
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4.3 Comments and Further Reading
The original publications of van der Waerden and Szemerédi concerning the top-
ics of this lecture are [vdW27] and [Sze75], respectively. In his influential2 article
[Fur77], Furstenberg showed both his correspondence principle (in a slightly different
form and with an alternative proof than what is presented here) and his multiple
recurrence statement. We mention that one can also go the other direction and con-
clude the recurrence result from Szemerédi’s theorem, see, e.g., [EFHN15, Section
20.2]. More on the impact of Furstenberg’s work on ergodic theory, as well as many
results related to the theorems of van der Waerden and Szemerédi (including “multi-
dimensional versions”), can, e.g., be found in the recent article [BGW24].

Another famous theorem in this context is due to Ben Green and Terence Tao (see
[GT08]): One can also find arithmetic progressions of arbitrary finite length within
the set of primes (even though this set has upper density zero, see Exercise 4.8). Both
Szemerédi’s theorem and the Green–Tao theorem would be implied by a (still open)
conjecture of Paul Erdős asserting that arithmetic progressions of arbitrary finite
length3 can be found in any subset A ⊆ N with

∑
n∈A

1
n
=∞ (see [Gow13]).

Theorem 4.2.11 is based on Issai Schur’s work [Sch17]. Our proof, using a tech-
nique of Bergelson from [Ber86], as well as the necessary version of Furstenberg’s
correspondence principle, is in essence from Joel Moreira’s blog.4

2In 2020 Furstenberg received the Abel prize “for pioneering the use of methods from probability
and dynamics in group theory, number theory and combinatorics.”

3The case of 3-progressions was established in a recent breakthrough [BS20] by Bloom and
Sisask.

4https://joelmoreira.wordpress.com/2013/08/18/applications-of-the-coloring-trick/

https://joelmoreira.wordpress.com/2013/08/18/applications-of-the-coloring-trick/
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4.4 Exercises

Exercise 4.1. Let K be a compact space and µ1, µ2 ∈ P(K). Show that for t ∈ [0, 1]

ν : B(K)→ [0, 1], A 7→ tµ1(A) + (1− t)µ2(A)

is a regular Borel probability measure on K with∫
K

f dν = t

∫
K

f dµ1 + (1− t)
∫
K

f dµ2

for all bounded Borel measurable functions f : K → C.

Exercise 4.2. For a compact space K and a regular Borel probability measure
µ ∈ P(K) the set

supp(µ) := {x ∈ K | µ(O) > 0 for every open neighborhood O of x}

is called the support of µ.

(i) Show that supp(µ) is a closed subset of K.

(ii) Show that if A ⊆ K is closed with A ∩ supp(µ) = ∅, then µ(A) = 0.

(iii) Use (ii) to conclude that µ(supp(µ)) = 1. In particular, supp(µ) is non-empty.

(iv) Show that supp(µ) is the smallest closed subset L ⊆ K with µ(L) = 1.

(v) Show that for a point x ∈ K we have µ = δx precisely when supp(µ) = {x}.
(vi) Assume now that (K, τ) is a topological dynamical system and µ ∈ P(K, τ).

Show that τγ(supp(µ)) = supp(µ) for every γ ∈ Γ.

Exercise 4.3. Let K be a compact space. Show that the extreme points of the
weak* compact and convex subset P(K) ⊆ C(K)′ are precisely the point measures
δx for x ∈ K.
Hint: Use Proposition 4.1.6 as well as Exercise 4.2.

Exercise 4.4. For Γ = Z consider the topological dynamical system ([0, 1], τ) given
by τ : Z → Homeo([0, 1]), n 7→ σn where σ(x) := x2 for x ∈ [0, 1]. Describe all
invariant measures µ ∈ P([0, 1], τ). Which of these are ergodic?

Exercise 4.5. Prove Lemma 4.2.5.

Exercise 4.6. Show that for all r, s ∈ [0, 1] with r ≤ s there is a subset A ⊆ N with
d(A) = r and d(A) = s.
Hint: We may assume 0 < r ≤ s < 1. Set M0 := 0. Then recursively construct
sequences (Nk)k∈N and (Mk)k∈N. If N1, . . . , Nk−1,M0, . . . ,Mk−1 have already been
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constructed for some k ∈ N, let Nk be the smallest N > Mk−1 with

1

N

(k−1∑
j=1

(Nj −Mj−1) + (N −Mk−1)

)
> s,

and let Mk be the smallest M > Nk with

1

M

k∑
j=1

(Nj −Mj−1) < r.

Then set A :=
⋃∞
j=1{Mj−1 + 1, . . . , Nj}.

Exercise 4.7. A subset A ⊆ N is syndetic (or has bounded gaps) if there is
N ∈ N such that {n, . . . , n+N} ∩ A ̸= ∅ for every n ∈ N.

(i) Show that if a subset A ⊆ N is syndetic, then d(A) > 0.

(ii) Find an example of a subset A ⊆ N with d(A) > 0 which is not syndetic.

Exercise 4.8. Let P ⊆ N be the set of all prime numbers. Let further π(n) :=
|P∩{1, . . . , n}| for n ∈ N be the number of primes in {1, . . . , n}. The prime number
theorem (see, e.g., [Jam03, Section 1.1]) asserts that

lim
n→∞

π(n) · log(n)
n

= 1.

(i) Use the prime number theorem to show that d(P) = 0.

(ii) Show that nπ(2n)−π(n) ≤
(
2n
n

)
≤ 4n for every n ∈ N.

Hint: All primes in {n + 1, . . . , 2n} appear in the prime factorization of the
number

(
2n
n

)
.

(iii) Use part (ii) to prove that π(2n+1)− π(2n) ≤ 2n+1

n
for every n ∈ N.

(iv) Use part (iii) to prove that π(22n)− π(2) ≤ 2n+1 + 22n+1

n
for every n ∈ N.

(v) Use part (iv) to show that d(P) = 0 without using the prime number theorem.



Lecture 5

In this chapter we prove a version of a famous decomposition result due to Jacobs,
de Leeuw and Glicksberg, which has numerous applications in operator and ergodic
theory. As a tool for its proof we investigate tensor products of Hilbert spaces and
discuss their relations to so-called Hilbert–Schmidt operators.

5.1 The Discrete Spectrum Part
Assume that U : G → U (H) is a unitary representation of a group G on a Hilbert
space H (see Definition 3.1.12). If we apply the Abstract Mean Ergodic Theorem
3.1.5 to the image U(G), we obtain an orthogonal decomposition ofH into a subspace
on which U acts in a very simple way (the fixed space fix(U(G))) and a subspace
on which U(G) “goes to zero” in some sense (the closed linear hull lin

⋃
x∈G(IdH −

Ux)(H)).

We prove a second splitting result for U and begin with the “structured part” of the
decomposition. Instead of vectors which remain fixed by the representation U , we
now consider vectors f ∈ H which “do not move too far” in the sense that the orbit
{Uxf | x ∈ G} is contained in a finite-dimensional subspace, or, equivalently, the
linear hull Mf := lin{Uxf | x ∈ G} is finite-dimensional. If we call a subset M ⊆ H
invariant whenever Uxf ∈ M for all f ∈ M and x ∈ G, then each such Mf is an
invariant finite-dimensional subspace. This motivates the following definition.

Definition 5.1.1. Let U : G → U (H) be a unitary representation of a group G.
Then the closure

Hds :=
⋃
{M ⊆ H |M invariant finite-dimensional subspace} ⊆ H

is called the discrete spectrum part of U .

Notice that the sum M1 +M2 of invariant finite-dimensional subspaces M1 and M2

of a unitary representation U : G → U (H) is again an invariant finite-dimensional
subspace, and thus Hds is always a (closed) linear subspace of H.

65
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We introduce the following concept of “minimal” invariant finite-dimensional sub-
spaces.

Definition 5.1.2. For a unitary representation U : G → U (H) of a group G, we
call an invariant finite-dimensional subspace M ⊆ H irreducible if {0} and M are
the only invariant linear subspaces contained in M .

Every invariant finite-dimensional subspace splits into irreducible ones:

Proposition 5.1.3. For every invariant finite-dimensional subspace M of a unitary
representation U : G→ U (H) of a group G there are d ∈ N and irreducible invari-
ant finite-dimensional subspaces M1, . . . ,Md ⊆ H such that M = M1 ⊕ · · · ⊕Md

orthogonally.

Using the following lemma, the result follows readily by induction on the dimension
of M (see Exercise 5.1).

Lemma 5.1.4. Let U : G → U (H) be a unitary representation of a group G. If
M ⊆ H is an invariant linear subspace, then so is the orthogonal complement M⊥.

Proof. Let f ∈ M⊥ and g ∈ M . For x ∈ G we have (Uxf |g) = (f |Ux−1g) = 0 since
Ux−1 is unitary and M is invariant. But this means Uxf ∈M⊥.

We obtain the following consequence of Proposition 5.1.3.

Corollary 5.1.5. Let U : G → U (H) be a unitary representation of a group G.
Then

Hds = lin
⋃
{M ⊆ H |M irreducible invariant finite-dimensional subspace}.

For abelian groups (in particular, for our fixed abelian group Γ) this leads to a
particularly simple description of the discrete spectrum part. Write T := {z ∈ C |
|z| = 1} for the multiplicative group of complex numbers of modulus one, and call
this the torus.

Definition 5.1.6. For an abelian group G a group homomorphism χ : G → T is
called a character. The dual group G∗ of G is the set of all such characters
equipped with the multiplication given by (χ1χ2)(x) := χ1(x)χ2(x) for x ∈ G and
χ1, χ2 ∈ G∗.

Observe that the dual group G∗ of an abelian group G is indeed an (abelian) group
with the neutral element 1 : G → T, x 7→ 1 and inverse χ : G → T, x 7→ χ(x) =
χ(x)−1 for χ ∈ G∗.

Example 5.1.7. For G = Z every z ∈ T defines a character χz : Z → T, m 7→ zm.
One can check that T → Z∗, z 7→ χz is a group isomorphism. See Exercise 5.3 for
this and further examples of representing dual groups.
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We now extend the classical concept of eigenvectors of matrices and linear operators
to unitary representations of abelian groups.

Definition 5.1.8. Let U : G → U (H) be a unitary representation of an abelian
group G. For a character χ ∈ G∗ we call

ker(χ− U) := {f ∈ H | Uxf = χ(x)f for every x ∈ G} =
⋂
x∈G

ker(χ(x)IdH − Ux)

the eigenspace of U with respect to χ, and elements f ∈ ker(χ−U)\{0} are called
eigenvectors with respect to χ. The set σp(U) := {χ ∈ G∗ | ker(χ− U) ̸= {0}} is
the point spectrum of U and its elements are called the eigenvalues of U .

Remark 5.1.9. Take a unitary operator V ∈ U (H) on a Hilbert space H. If
U : Z→ U (H), m 7→ V m is the induced unitary representation of G = Z, then, with
the isomorphism T→ Z∗, z 7→ χz from Example 5.1.7, ker(χz−U) = ker(zIdH−V )
for every z ∈ T. In this way, Definition 5.1.8 extends the known spectral theo-
retic concepts of eigenvectors, eigenvalues and eigenspaces from linear algebra and
functional analysis.

Eigenspaces of unitary representations of abelian groups have the following proper-
ties.

Proposition 5.1.10. Let U : G→ U (H) be a unitary representation of an abelian
group G. Then the following assertions hold.

(i) The eigenspaces ker(χ− U) for χ ∈ G∗ are pairwise orthogonal.

(ii) For M ⊆ H the following assertions are equivalent.

(a) M is an irreducible invariant finite-dimensional subspace.

(b) M is an invariant linear subspace which is at most one-dimensional.

(c) There is χ ∈ G∗ and f ∈ ker(χ− U) such that M = C · f .

Proof. For part (i) take χ1, χ2 ∈ G∗ with χ1 ̸= χ2. Choose x ∈ G with χ1(x) ̸=
χ2(x). If f ∈ ker(χ1 − U) and g ∈ ker(χ2 − U), then

χ1(x)χ2(x)(f |g) = (χ1(x)f |χ2(x)g) = (Uxf |Uxg) = (f |g).

Since χ1(x)χ2(x) ̸= 1, we obtain (f |g) = 0.

We now prove part (ii). The implications “(b) ⇒ (a)” and “(c) ⇒ (b)” are obvious.
For “(a)⇒ (c)” take an irreducible invariant finite-dimensional subspaceM ⊆ H. We
may assume that M ̸= {0}. For x ∈ G the restriction Ux|M : M →M of Ux to M is a
unitary map on a finite-dimensional Hilbert space and thus has, by linear algebra, an
eigenvector with respect to some eigenvalue χ(x) ∈ T, i.e., ker(χ(x)IdM − Ux|M) ̸=
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{0}. Now if f ∈ ker(χ(x)IdM − Ux|M) and y ∈ G, then, since G is abelian1,

UxUyf = Uxyf = Uyxf = UyUxf = Uy(χ(x)f) = χ(x)Uyf,

hence Uyf ∈ ker(χ(x)IdM − Ux|M). Thus, ker(χ(x)IdM − Ux|M) is an invariant
subspace ofH contained inM . SinceM is irreducible, we obtainM = ker(χ(x)IdM−
Ux|M), i.e., Uxf = χ(x)f for every f ∈M .

Since U is a group homomorphism and there is some f ∈M \ {0}, the map χ : G→
T, x 7→ χ(x) is a character. By definition of χ we have M ⊆ ker(χ − U). In
particular, if we pick f ∈ M \ {0}, then C · f is an invariant subspace contained in
M . Thus, M = C · f since M is irreducible.

Combined with Corollary 5.1.5 we obtain:

Corollary 5.1.11. Let U : G → U (H) be a unitary representation of an abelian
group G. Then Hds = lin

⋃
χ∈G∗ ker(χ− U).

5.2 Interlude: Standard Constructions for Hilbert
Spaces

Before we identify the orthogonal complement of the discrete spectrum part of a
unitary representation, let us first review some standard constructions from Hilbert
space theory.

Completions. Recall that we can “complete” any metric space (X, dX) in the
following way (see, e.g., [SV06, Section 1.5]): Let CS(X) be the set of all Cauchy
sequences (xn)n∈N in X, and write (xn)n∈N ∼ (yn)n∈N for (xn)n∈N, (yn)n∈N ∈ CS(X)
if limn→∞ dX(xn, yn) = 0. Then ∼ is an equivalence relation on CS(X), and

dX : X ×X → [0,∞), ([(xn)n∈N], [(yn)n∈N]) 7→ lim
n→∞

dX(xn, yn)

defines a complete metric on the quotient space X := CS(X)/∼. Mapping every
x ∈ X to the equivalence class of the constant sequence (x, x, x, . . . ) ∈ CS(X) then
yields an isometric (and, in particular, injective) map iX : X → X, and it is common
to identify x with its image iX(x) ∈ X. The space (X, dX) is called the completion
of (X, dX).

Now if we start from an inner product (·|·) on a vector space V and consider the
induced metric given by dV (f, g) := ∥f − g∥ =

√
(f − g|f − g) for f, g ∈ V . Then

1Here we use multiplicative notation for the abelian group G (while our fixed group Γ is written
additively).



5.2. INTERLUDE: STANDARD CONSTRUCTIONS FOR HILBERT SPACES69

one can check that the operations

V × V → V , ([(xn)n∈N], [(yn)n∈N]) 7→ [(fn + gn)n∈N],

C× V → V , (c, [(fn)n∈N]) 7→ [(c · fn)n∈N]

turn V into a vector space, and

(·|·) : V × V → C, ([(fn)n∈N], [(gn)n∈N]) 7→ lim
n→∞

(fn|gn)

is an inner product on V which induces the metric dV (see, e.g., [Wei80, Theorem
4.11]). Thus, we can view V as a dense subspace of the Hilbert space V . We call V
the completion of V respect to the inner product (·|·).
Dual Spaces. Recall that for any Hilbert space H, by the Riesz–Fréchet repre-
sentation theorem (see Theorem A.2.3), the map H → H ′, g 7→ g to its dual space
H ′ given by g(f) := (f |g) for f, g ∈ H is a bijection. By setting (f |g) := (g|f) for
f, g ∈ H we then turn H ′ into a Hilbert space, which we call the dual Hilbert
space of H2.

We further note that any linear isometry U : H → K between Hilbert spaces also
defines a linear isometry U : H ′ → K ′, f 7→ Uf between the corresponding dual
Hilbert spaces.

Tensor Products. Recall that for any (complex) vector spaces E1 and E2 we can
consider their vector space tensor product E1 ⊗vect E2, see, e.g., [Hun74, Section
IV.5] or [Lan02, Chapter 16]. Its elements are written as (finite) sums of simple
tensors f ⊗ g for f ∈ E1 and g ∈ E2. The key feature of the tensor product is
“linearizing” bilinear maps:

Proposition 5.2.1. Let E1, E2 be vector spaces. Whenever b : E1 × E2 → F is a
bilinear map to a vector space F , then there is a unique linear map lb : E1⊗vectE2 →
F with lb(f ⊗ g) = b(f, g) for all f ∈ E1 and g ∈ E2.

We introduce a Hilbert space version of the tensor product using the following
observation (see, e.g., [Wei80, Section 3.4]).

Proposition 5.2.2. Let H1 and H2 be Hilbert spaces. Then there is a unique inner
product (·|·) on H1⊗vectH2 with (f1⊗f2|g1⊗g2) = (f1|g1) · (f2|g2) for all f1, g1 ∈ H1

and f2, g2 ∈ H2.

Definition 5.2.3. For Hilbert spacesH1 andH2 their Hilbert space tensor prod-
uct H1 ⊗H2 is the completion of the vector space tensor product H1 ⊗vect H2 with
respect to the inner product from Proposition 5.2.2.

2Note that, since we work over the field of complex numbers here, the map H → H ′, g 7→ g is
antilinear, so we cannot directly identify H with H ′ as Hilbert spaces.
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We need the following easy consequence of Propositions 5.2.1 and A.1.1.

Proposition 5.2.4. Let U1 : H1 → K1 and U2 : H2 → K2 be linear isometries
between Hilbert spaces. Then there is a unique linear isometry U1⊗U2 : H1⊗H2 →
K1 ⊗K2 with (U1 ⊗ U2)(f1 ⊗ f2) = U1f1 ⊗ U2f2 for all f1 ∈ H1 and f2 ∈ H2.

5.3 The JdLG-Decomposition

With the previous constructions we now can consider for any group G

(i) the dual representation

U : G→ U (H ′), x 7→ Ux

of a unitary representation U : G→ U (H), and

(ii) the tensor product representation

U1 ⊗ U2 : G→ U (H1 ⊗H2), x 7→ (U1)x ⊗ (U2)x

of unitary representations Ui : G→ U (Hi) for i = 1, 2.

In particular, given any unitary representation U : G→ U (H) we can consider the
tensor product U ⊗ U : G → U (H ⊗H ′) with its dual representation. We use this
to describe the orthogonal complement of the discrete spectrum part Hds.

Let us assume, for the moment, that G is abelian. If χ ∈ G∗ is a character and f is
an element of the eigenspace ker(χ− U), then

(Ux ⊗ Ux)(f ⊗ f) = Uxf ⊗ Uxf = χ(x)f ⊗ (χ(x)f) = χ(x) · χ(x) · f ⊗ f = f ⊗ f,

for every x ∈ G since |χ(x)|2 = 1. Thus, f ⊗ f ∈ fix(U ⊗ U). We can therefore
construct fixed vectors in the tensor product H ⊗H ′ from eigenvectors in H!

If G is non-abelian, then the same idea still applies, but is slightly more complicated
to write down. Assume that {e1, . . . , en} is an orthonormal basis (short: ONB) of
an invariant finite-dimensional subspace M ⊆ H. For every x ∈ G and f ∈ M we
can then write Uxf =

∑m
i=1(Uxf |ei)ei, and thus

(Ux ⊗ Ux)
n∑
i=1

ei ⊗ ei =
n∑
i=1

Uxei ⊗ Uxei =
n∑
i=1

( n∑
j=1

(Uxei|ej)ej
)
⊗
( n∑
k=1

(Uxei|ek)ek
)

=
n∑
j=1

n∑
k=1

( n∑
i=1

(Uxei|ej)(Uxei|ek)
)
ej ⊗ ek.
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Since Ux is unitary, we obtain that the vectors Uxe1, . . . , Uxen also form an orthonor-
mal basis of M , hence

n∑
i=1

(Uxei|ej)(Uxei|ek) =
( n∑
i=1

(ek|Uxei)Uxei
∣∣∣∣ej) = (ek|ej) = δkj.

This shows (Ux ⊗ Ux)
∑n

i=1 ei ⊗ ei =
∑n

i=1 ei ⊗ ei for every x ∈ G, and there-
fore

∑n
i=1 ei ⊗ ei ∈ fix(U ⊗ U). In this way, orthonormal bases of invariant finite-

dimensional subspaces of H give rise to fixed vectors in the tensor product H ⊗
H ′.

The key insight of this lecture is that these elements already generate the entire
fixed space:

Theorem 5.3.1 (Key Lemma). Let U : G → U (H) be a unitary representation of
a group G. Then the linear hull

lin

{ n∑
i=1

ei ⊗ ei
∣∣∣∣ {e1, . . . en} ⊆ H ONB of an invariant finite-dimensional subspace

}
is dense in fix(U ⊗ U).
We will prove the Key Lemma at the end of this lecture. For now, let us introduce the
set of vectors which “do not contribute” to the fixed space of the tensor product.

Definition 5.3.2. Let U : G → U (H) be a a unitary representation of a group G
on a Hilbert space H. Then Hwm := {f ∈ H | f ⊗ f ∈ fix(U ⊗ U)⊥} is the weakly
mixing part of U .

If the group G has a Følner net (e.g., if it is abelian), then we obtain a more concrete
description of the weakly mixing part.

Proposition 5.3.3. Let U : G → U (H) be a unitary representation of a group G
with Følner net (Fi)i∈I . Then

Hwm =

{
f ∈ H

∣∣∣∣ limi∈I sup
g∈H
∥g∥≤1

1

|Fi|
∑
x∈Fi

|(Uxf |g)|2 = 0

}

=

{
f ∈ H

∣∣∣∣ limi∈I 1

|Fi|
∑
x∈Fi

|(Uxf |f)|2 = 0

}
.

Proof. Write P ∈ L (H ⊗ H ′) for the orthogonal projection onto fix(U ⊗ U). For
every f ∈ H we obtain that

lim
i∈I

1/|Fi|
∑
x∈Fi

Uxf ⊗ Uxf = P (f ⊗ f)
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by Proposition 3.1.14 and Theorem 3.1.15. Denote the sets on the above right-hand
side by H1 and H2 (from top to bottom). For f ∈ H and g ∈ H with ∥g∥ ≤ 1 we
obtain

1

|Fi|
∑
x∈Fi

|(Uxf |g)|2 =
(

1

|Fi|
∑
x∈Fi

Uxf ⊗ Uxf
∣∣∣∣g ⊗ g) ≤ ∥∥∥∥ 1

|Fi|
∑
x∈Fi

Uxf ⊗ Uxf
∥∥∥∥

by the Cauchy–Schwarz inequality for every i ∈ I. This implies Hwm ⊆ H1. The
inclusions H1 ⊆ H2 is obvious. Finally, if f ∈ H2, then

∥P (f ⊗ f)∥2 = (P (f ⊗ f)|f ⊗ f) = lim
i∈I

1

|Fi|
∑
x∈Fi

(Uxf ⊗ Uxf |f ⊗ f) = 0.

We now prove our desired decomposition (assuming the Key Lemma), which is a
version of a splitting result of Konrad Jacobs, Karl de Leeuw, and Irving Glicksberg.
It will be of crucial importance in the next two lectures, but is also applied in Exercise
5.5 below to prove “weighted mean ergodic theorems”.

Theorem 5.3.4 (JdLG-decomposition). For every unitary representation U : G→
U (H) of a group G we have an orthogonal decomposition H = Hds ⊕Hwm into the
invariant closed linear subspaces Hds and Hwm.

Proof. For f ∈ H we have f ∈ H⊥
ds precisely when

∑n
i=1 |(f |ei)|2 = 0 for each

orthonormal basis {e1, . . . , en} of an invariant, finite-dimensional subspace M ⊆ H.
But this means that (f ⊗ f |

∑n
i=1 ei ⊗ ei) = 0 for each such orthonormal basis. By

Theorem 5.3.1 this is the case precisely when f ⊗ f ∈ fix(U ⊗ U)⊥.

5.4 Hilbert–Schmidt Operators
To prove the Key Lemma (Theorem 5.3.1), we take a different perspective on the
tensor product H ⊗H ′ of a Hilbert space H.

Definition 5.4.1. For a Hilbert space H call a linear map A : H → H a Hilbert–
Schmidt operator if

∥A∥HS := sup


(

n∑
j=1

∥Aej∥2
) 1

2 ∣∣∣∣{e1, . . . , en} orthonormal in H

 <∞.

Denote the set of Hilbert–Schmidt operators on H by HS(H).

We start with some elementary observations.
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Lemma 5.4.2. Let A : H → H be a linear map on a Hilbert space H.

(i) If A ∈ HS(H), then A is also a bounded operator with ∥A∥ ≤ ∥A∥HS.

(ii) If E ⊆ H is an orthonormal basis of H, then

∥A∥2HS =
∑
e∈E

∥Ae∥2 := sup

{∑
e∈F

∥Ae∥2 | F ⊆ E finite
}
.

(iii) A ∈ HS(H) precisely when A∗ ∈ HS(H). In this case ∥A∥HS = ∥A∗∥HS.

Proof. For part (i) take f ∈ H \ {0}. Then the singleton set {f/∥f∥} is orthonormal,
hence ∥A(f/∥f∥)∥ ≤ ∥A∥HS, and consequently ∥Af∥ ≤ ∥A∥HS · ∥f∥. This implies (i).

For parts (ii) and (iii) let E ⊆ H be an orthonormal basis of H and take a finite
orthonormal subset F ⊆ F . By Parseval’s identity (see Theorem A.2.5) we obtain∑

f∈F

∥A∗f∥2 =
∑
f∈F

∑
e∈E

|(A∗f |e)|2 =
∑
e∈E

∑
f∈F

|(Ae|f)|2 ≤
∑
e∈E

∥Ae∥2

where the last inequality follows from Bessel’s inequality (see A.2.6). This implies
∥A∗∥2HS ≤

∑
e∈E ∥Ae∥2 ≤ ∥A∥2HS. Since (A∗)∗ = A, we conclude that

∥A∥2HS ≤
∑
e∈E

∥A∗e∥2 ≤ ∥A∗∥2HS ≤
∑
e∈E

∥Ae∥2 ≤ ∥A∥2HS,

and hence all these inequalities are actually equalities. This shows (ii) and (iii).

We need the following observation.

Proposition 5.4.3. Let H be a Hilbert space. Then HS(H) is a linear subspace of
L (H) and a Banach space when equipped with ∥ · ∥HS.

Proof. Clearly, the zero operator is an element of HS(H), and it is easy to see that
cA ∈ HS(H) with ∥cA∥HS = |c| · ∥A∥HS for each c ∈ C and A ∈ HS(H). Now if
A,B ∈ HS(H), take a finite orthonormal subset E = {e1, . . . , en} ⊆ H. Then

n∑
i=1

∥(A+B)ei∥2 =
n∑
i=1

∥Aei∥2 +
n∑
i=1

2 · Re (Aei|Bei) +
n∑
i=1

∥Bei∥2

By the “Pythagorean theorem” and the Cauchy–Schwarz inequalities for H and Cn

we thus obtain
n∑
i=1

∥(A+B)ei∥2 ≤
n∑
i=1

∥Aei∥2 + 2 ·
( n∑
i=1

∥Aei∥2
) 1

2
( n∑
i=1

∥Bei∥2
) 1

2

+
n∑
i=1

∥Bei∥2

=

(( n∑
i=1

∥Aei∥2
) 1

2

+

( n∑
i=1

∥Bei∥2
) 1

2
)2

≤ (∥A∥HS + ∥B∥HS)
2.
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Thus, A+B ∈ HS(H) with ∥A+B∥HS ≤ ∥A∥HS + ∥B∥HS. This shows that HS(H)
is a linear subspace of L (H) and ∥ · ∥HS is a seminorm on HS(H). By Lemma 5.4.2
(i) it is even a norm (since the operator norm is one).

To see that it is complete, take a Cauchy sequence (An)n∈N in HS(H) with respect to
∥ ·∥HS. By Lemma 5.4.2 (i) it is also a Cauchy sequence with respect to the operator
norm ∥ · ∥, and thus there is a unique A ∈ L (H) with limn→∞ ∥An − A∥ = 0. For
ε > 0 choose n0 ∈ N such that ∥An − Am∥2HS ≤ ε for all n,m ≥ n0. If E ⊆ H is a
finite orthonormal subset, we obtain∑

e∈E

∥Ae− Ane∥2 = lim
m→∞

∑
e∈E

∥Ame− Ane∥2 ≤ lim sup
m→∞

∥An − Am∥2HS ≤ ε

for every n ≥ n0. This readily implies A ∈ HS(H) with limn→∞ ∥A−An∥HS = 0.

One can even turn HS(H) into a Hilbert space in a canonical way (see Exercise
5.7).

The following are simple examples of Hilbert–Schmidt operators. More interesting
ones are discussed in Exercise 5.6 below.

Example 5.4.4. Let H be a Hilbert space. For g, h ∈ H consider the “rank-one”
linear map Ag,h : H → H given by Ag,h(f) := (f |h)g for f ∈ H. Then a short
computation using the Fourier expansion (see Theorem A.2.5) shows that the map
Ag,h is a Hilbert–Schmidt operator with ∥Ag,h∥HS = ∥g∥ · ∥h∥.
If B : H → H is any operator with finite-dimensional range and {e1, . . . , en} is an
orthonormal basis for its range, then we can write

Bf =
n∑
i=1

(Bf |ei)ei =
n∑
i=1

Aei,B∗eif

for every f ∈ H, and hence B is also a Hilbert–Schmidt operator.

With the notation for rank-one operators from Example 5.4.4 we obtain the following
identification.

Proposition 5.4.5. For a Hilbert space H there is a unique isometric linear bijec-
tion Φ: H ⊗H ′ → HS(H) with Φ(g ⊗ h) = Ag,h for all g, h ∈ H.

We first prove the following auxiliary result.

Lemma 5.4.6. Let H be a Hilbert space. Then the linear hull lin{Ag,h | g, h ∈ H}
is dense in HS(H).

Proof. Pick an orthonormal basis E ⊆ H of H and let A ∈ HS(H). Using Lemma
5.4.2 (ii) we choose for a given ε > 0 some finite orthonormal set F ⊆ E with
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∥A∥2HS ≤
∑

e∈F ∥Ae∥2 + ε and consider B :=
∑

e∈F AAe,e. For every finite subset
C ⊆ E we then obtain

∑
f∈C

∥Bf − Af∥2 =
∑

f∈C∩F

∥∥∥∥∑
e∈F

(f |e)Ae− Af
∥∥∥∥2 + ∑

f∈C\F

∥∥∥∥∑
e∈F

(f |e)Ae− Af
∥∥∥∥2

= 0 +
∑
f∈C\F

∥Af∥2 ≤ ∥A∥2HS −
∑
f∈F

∥Af∥2 ≤ ε.

This implies ∥B − A∥2HS ≤ ε.

Proof of Proposition 5.4.5. Observe that the map H ×H ′ → HS(H), (g, h) 7→ Ag,h
is bilinear. Thus, it induces a unique linear map Φ: H ⊗vect H

′ → HS(H) with
Φ(g ⊗ h) = Ag,h for all g, h ∈ H (see Proposition 5.2.1). Moreover, if E ⊆ H is an
orthonormal basis for H we obtain by Lemma 5.4.2 (ii) and Theorem A.2.5,∥∥∥∥Φ( n∑

i=1

gi ⊗ hi
)∥∥∥∥2

HS

=
∑
e∈E

∥∥∥∥ n∑
i=1

(e|hi)gi
∥∥∥∥2 = n∑

i=1

n∑
j=1

∑
e∈E

(e|hi)(e|hj)(gi|gj)

=
n∑
i=1

n∑
j=1

(∑
e∈E

(hj|e)e
∣∣∣∣hi)(gi|gj) = n∑

i=1

n∑
j=1

(hj|hi)(gi|gj)

=
n∑
i=1

n∑
j=1

(gi ⊗ hi|gj ⊗ hj) =
∥∥∥∥ n∑
i=1

gi ⊗ hi
∥∥∥∥2

for all g1, . . . , gn, h1, . . . , hn ∈ H. By Lemma A.1.1, Φ uniquely extends to a linear
isometry Φ: H ⊗ H ′ → HS(H). Since the image of linear isometries between Ba-
nach spaces is complete, hence closed, we obtain that the range of Φ(H ⊗H ′) is a
closed linear subspace of HS(H). Since it contains all operators Ag,h for g, h ∈ H,
we conclude from Lemma 5.4.6 that Φ is surjective, and hence an isometric linear
bijection.

We use the identification from Proposition 5.4.5 to translate the Key Lemma to a
statement about Hilbert–Schmidt operators. The proof will then be a consequence
of the following version of the spectral theorem for self-adjoint Hilbert–Schmidt
operators, which represents such an operator as a series of finite rank operators.

Theorem 5.4.7. Let A ∈ HS(H) be a self-adjoint Hilbert–Schmidt operator on a
Hilbert space H. Then there is a unique sequence (λn)n∈N in [0,∞) and unique
sequences (P+

n )n∈N and (P−
n )n∈N of orthogonal projections in L (H) with

(i) λn+1 ≤ λn with equality only if λn = 0 for n ∈ N,

(ii) λn = 0 precisely when P+
n = P−

n = 0 for n ∈ N,
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(iii) infn∈N λn = 0,

(iv) P+
n (H) and P−

n (H) are finite-dimensional for every n ∈ N,

(v) P+
n (H) ⊥ P+

m(H) and P−
n (H) ⊥ P−

m(H) for n ̸= m,

(vi) P+
n (H) ⊥ P−

n (H) for every n ∈ N,

such that A =
∑∞

n=1 λn(P
+
n − P−

n ) with respect to the Hilbert–Schmidt norm.

This is a consequence of the spectral theorem for compact self-adjoint operators,
which most readers of the course should be familiar with. However, we include a
complete proof of Theorem 5.4.7 as a supplement to this lecture. Let us now use it
to finally show the Key Lemma, and therefore finish the proof our decomposition
result Theorem 5.3.4.

Proof of Theorem 5.3.1. For every x ∈ G we obtain an isometric linear bijection
Ux : HS(H)→ HS(H) via UxA := UxAU

−1
x for A ∈ HS(H) (note that UxA is indeed

again a Hilbert–Schmidt operator with ∥UxA∥HS = ∥A∥HS). For g, h ∈ H we obtain

((Φ ◦ (Ux ⊗ Ux))g ⊗ h)(f) = (f |Uxh)Uxg = (U−1
x f |h)Uxg = ((Ux ◦ Φ)g ⊗ h)(f)

for every f ∈ H. By linearity and continuity, this implies that Φ◦(Ux⊗Ux) = Ux◦Φ
for every x ∈ G. This shows that

Φ(fix(U ⊗ U ′)) = fix(U) := {A ∈ HS(H) | UxA = AUx for every x ∈ G}.

Since Φ is a isometric linear bijection, the claim of the key lemma is equivalent to
the following: The linear hull L of all operators Φ(

∑n
i=1 ei ⊗ ei), where {e1, . . . , en}

is an orthonormal basis of an invariant finite-dimensional subspace of H, is dense in
fix(U) ⊆ HS(H) with respect to the Hilbert–Schmidt norm ∥ · ∥HS.

So take A ∈ fix(U) and show that A is in the closure of L. First observe that we
can write A = A+A∗

2
+ iA−A

∗

2i
and a moment’s thought reveals that A+A∗

2
, A−A

∗

2i
are

self-adjoint elements of fix(U). We may therefore assume that A is self-adjoint and
take the “spectral decomposition” A =

∑∞
n=1 λn(P

+
n −P−

n ) from Theorem 5.4.7. For
x ∈ G we obtain

A = UxAU
−1
x =

∞∑
n=1

λn(UxP
+
n U

−1
x − UxP−

n U
−1
x ),

and uniqueness of the representation implies that UxP+
n U

−1
x = P+

n and UxP−
n U

−1
x =

P−
n , hence P+

n , P
−
n ∈ fix(U) for every n ∈ N. In particular, the orthogonal pro-

jections P in fix(U) with finite-dimensional range span a dense linear subspace of
fix(U). We may therefore reduce to the case that A = P is such a projection. Since
UxP = PUx for every x ∈ G, the range M := ran(P ) is then an invariant finite-
dimensional subspace of H. Let {e1, . . . , en} be an orthonormal basis for M . Then
Φ(
∑n

i=1 ei ⊗ ei) =
∑n

i=1Aei,ei = P , see Example 5.4.4. This shows the claim.
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5.5 Supplement: The Spectral Theorem for Self-
Adjoint Hilbert–Schmidt Operators

We now present a rather elementary3 proof of the spectral theorem for self-adjoint
Hilbert–Schmidt operators (Theorem 5.4.7) based on [Con85, Paragraph II.5] and
[EHK24, Section 4.1]. We start with some preliminary observations on self-adjoint
operators.

Lemma 5.5.1. Let A ∈ L (H) be a self-adjoint operator on a Hilbert space H.

(i) ker(α · IdH − A) ⊥ ker(β · IdH − A) for all α, β ∈ R with α ̸= β.

(ii) ∥A∥ = sup{|(Af |f)| | f ∈ H with ∥f∥ = 1}.

Proof. The proof of part (i) is similar to the one of Proposition 5.1.10 (i): Take f ∈
ker(α · IdH−A) and g ∈ ker(β · IdH−A). Then α(f |g) = (Af |g) = (f |Ag) = β(f |g),
and hence (f |g) = 0.

For part (ii) denote the right hand side by c. The inequality c ≤ ∥A∥ follows from
the Cauchy–Schwarz inequality. A short computation (using that A = A∗) shows
the identities

(A(f ± g)|f ± g) = (Af |f)± 2Re(Af |g) + (Ag|g),

which in turn yield

(A(f + g)|f + g)− (A(f − g)|f − g) = 4 · Re(Af |g)

for all f, g ∈ H. The definition of c and rescaling gives us |(Ah|h)| ≤ c∥h∥2 for all
h ∈ H. Since in a Hilbert space H the norm satisfies the “parallelogram law”

∥(f + g)∥2 + ∥f − g∥2 = 2(∥f∥2 + ∥g∥2),

we therefore obtain 4 ·Re(Af |g) ≤ 2c · (∥f∥2+∥g∥2) for all f, g ∈ H. Now for f ∈ H
with ∥f∥ ≤ 1 and Af ̸= 0 set g := Af/∥Af∥. Then 4∥Af∥ = 4(Af |g) ≤ 2c(1+1) = 4c.
This shows ∥A∥ ≤ c.

The following is the key ingredient in the proof of Theorem 5.4.7.

Lemma 5.5.2. Let A ∈ HS(H) be a self-adjoint Hilbert–Schmidt operator on a
Hilbert space H ̸= {0}. Then ker(∥A∥ · IdH −A) ̸= {0} or ker(∥A∥ · IdH +A) ̸= {0}.

Proof. We may assume that A ̸= 0 and, by rescaling, that ∥A∥ = 1. By Lemma
5.5.1 (ii) we find a sequence (fn)n∈N in H with ∥fn∥ = 1 for all n ∈ N and
limn→∞ |(Afn|fn)| = 1. Since A is self-adjoint, (Afn|fn) = (Afn|fn) ∈ R for

3With some knowledge of spectral theory shorter proofs are available.
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every n ∈ N, and thus we may assume (after passing to a subsequence) that
limn→∞(Afn|fn) = 1 or limn→∞(Afn|fn) = −1. We only treat the first case (the
second one is similar). Since

∥fn − Afn∥2 = ∥fn∥2 − 2(Afn|fn) + ∥Afn∥2 ≤ 2− 2(Afn|fn)

for all n ∈ N, we obtain limn→∞ fn − Afn = 0.

By Lemma 5.4.6 we find a sequence (Ak)k∈N of operators onH with finite-dimensional
range with limn→∞ ∥A − Ak∥HS = 0. In particular, we have limn→∞ ∥A − Ak∥ = 0
by Lemma 5.4.2 (i). Since (Akfn)n∈N is a bounded sequence in a finite-dimensional
normed space, it has a convergent subsequence. By using a diagonal sequence argu-
ment we may assume (passing to a subsequence) that (Akfn)n∈N converges for every
k ∈ N. Combining this with the fact that limn→∞ ∥A − Ak∥ = 0, an application
of the triangle inequality reveals that (Afn)n∈N is a Cauchy sequence in H, hence
convergent to some g ∈ H. But then also

lim
n→∞

fn = lim
n→∞

(fn − Afn) + lim
n→∞

Afn = g

and, in particular, ∥g∥ = limn→∞ ∥fn∥ = 1. Since A is continuous, we have Ag =
limn→∞Afn = g, hence g ∈ ker(IdH − A) ̸= {0}.

We also need the following observation.

Lemma 5.5.3. Let A ∈ HS(H) be a self-adjoint Hilbert–Schmidt operator on a
Hilbert space H and α ∈ R \ {0}. Then dimker(α · IdH − A) ≤ ∥A∥2HS/α2 <∞.

Proof. For any finite orthonormal subset E in ker(α · IdH − A) we have

|E| =
∑
e∈E

∥e∥2 = 1

α2

∑
e∈E

∥Ae∥2 ≤ ∥A∥
2
HS

α2
.

By the Gram–Schmidt process, this implies the claim.

Let us now restate and prove the Spectral Theorem 5.4.7.

Theorem. Let A ∈ HS(H) be a self-adjoint Hilbert–Schmidt operator on a Hilbert
space H. Then there is a unique sequence (λn)n∈N in [0,∞) and unique sequences
(P+

n )n∈N and (P−
n )n∈N of orthogonal projections in L (H) with

(i) λn+1 ≤ λn with equality only if λn = 0 for n ∈ N,

(ii) λn = 0 precisely when P+
n = P−

n = 0 for n ∈ N,

(iii) infn∈N λn = 0,

(iv) P+
n (H) and P−

n (H) are finite-dimensional for every n ∈ N,
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(v) P+
n (H) ⊥ P+

m(H) and P−
n (H) ⊥ P−

m(H) for n ̸= m,

(vi) P+
n (H) ⊥ P−

n (H) for every n ∈ N,

such that A =
∑∞

n=1 λn(P
+
n − P−

n ) with respect to the Hilbert–Schmidt norm.

Proof. First prove existence. We recursively build sequences of finite rank orthogonal
projections (P+

n )n∈N and (P−
n )n∈N as well as an auxiliary sequence (An)n∈N of self-

adjoint Hilbert–Schmidt operators with A1 = A such that with λn := ∥An∥ for
n ∈ N the following assertions hold:

(1) A = An +
∑n−1

j=1 λj(P
+
j − P−

j ),

(2) AnP±
m = P±

mAn = 0 for m < n,

(3) P+
n (H) ⊥ P−

n (H),

(4) P+
n (H) ⊥ P+

m(H) and P−
n (H) ⊥ P−

m(H) for m < n,

(5) λn = 0 if and only if P+
n = P−

n = 0,

(6) λn ≤ λn−1 with equality only if λn−1 = 0,

for every n ∈ N.

So assume that A1, . . . , An−1, P+
1 , . . . , P

+
n−1, and P−

1 , . . . , P
−
n−1 have already been

defined for some n ∈ N (for n = 1 this is a trivial assumption). We let

An := An−1 − λn−1(P
+
n−1 − P−

n−1) ∈ HS(H).

If An = 0, we set P+
n := 0 and P+

n := 0. Otherwise, we let P+
n and P−

n be the
orthogonal projections onto the eigenspaces ker(∥An∥ · IdH − An) and ker(∥An∥ ·
IdH + An), respectively. By Lemma 5.5.3 the projections P+

n and P−
n have finite-

dimensional range. We check the list of properties above.

(1) This holds by construction and property (1) for n− 1.

(2) For m ∈ {1, . . . , n− 1} we have

P±
mAn = P±

mA−
n−1∑
j=1

λjP
±
m(P

+
j − P−

j ) = ±λmP±
m − (±λmP±

m) = 0.

Similarly (or by taking adjoints), we obtain AnP±
m = 0.

(3) This holds by Lemma 5.5.1 (i).

(4) Since P±
n (H) ⊆ An(H), this follows from (2).

(5) If λn = ∥An∥ = 0, then P+
n = P−

n = 0 by definition. If, conversely, P+
n =

P−
n = 0, then λn = ∥An∥ = 0 by Lemma 5.5.2.

(6) We have An−1 = An+λn−1(P
+
n−1−P−

n−1) by definition. Since An(H) ⊥ P±
m(H)
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for every m < n by (2) we obtain

∥An−1f∥2 = ∥Anf∥2 + λ2n−1∥(P+
n−1 − P−

n−1)f∥2 ≥ ∥Anf∥2.

for every f ∈ H. This implies λn = ∥An∥ ≤ ∥An−1∥ = λn−1.

Assume that λn = λn−1 ̸= 0. By Lemma 5.5.2 we find f ∈ H \ {0} with
∥f∥ = 1 and Anf = ∥An∥f or Anf = −∥An∥f . In particular, f ∈ ran(An)
which implies P±

n−1f = 0 by part (2). But then

An−1f = An−1(IdH − (P+
n−1 − P−

n−1))f = Anf ∈ {λn−1f,−λn−1f}

by construction of An and part (2). But then f ∈ P+
n−1(H) or f ∈ P−

n−1(H),
contradicting P±

n−1f = 0.

One can check that if B,C ∈ HS(H) are self-adjoint with BC = CB = 0, then
∥B + C∥2HS = ∥B∥2HS + ∥C∥2HS. For the constructed sequences we therefore readily
obtain that

∥A∥2HS = ∥An∥2HS +
n−1∑
j=1

λ2j(∥P+
j ∥2HS + ∥P−

j )∥2HS) ≥
n−1∑
j=1

λ2j(∥P+
j ∥2HS + ∥P−

j )∥2HS)

for every n ∈ N by properties (1) – (4).

In particular,
∑∞

j=1 λ
2
j(∥P+

j ∥2HS+∥P−
j )∥2HS) <∞, which implies that (

∑n−1
j=1 λj(P

+
j −

P−
j ))n∈N is a Cauchy sequence in HS(H), and hence the limit

∑∞
j=1 λj(P

+
j − P−

j ) =

limn→∞
∑n−1

j=1 λj(P
+
j − P−

j ) exists with respect to the Hilbert–Schmidt norm (and,
in particular, with respect to the operator norm).

We obtain by (5) that
∑∞

j=1 λ
2
j ≤

∑∞
j=1 λ

2
j(∥P+

j ∥2HS + ∥P−
j )∥2HS) <∞ which implies

limn→∞ ∥An∥ = limn→∞ λn = 0. Thus,∥∥∥∥A− ∞∑
j=1

λj(P
+
j − P−

j )

∥∥∥∥ = lim
n→∞

∥∥∥∥A− n−1∑
j=1

λj(P
+
j − P−

j )

∥∥∥∥ = lim
n→∞

∥An∥ = 0.

This shows A =
∑∞

j=1 λj(P
+
j − P−

j ) as desired.

For uniqueness take any representation A =
∑∞

n=1 λn(P
+
n −P−

n ) as in Theorem 5.4.7.
One can then readily check that

{λn | n ∈ N} \ {0} = {|λ| | λ ∈ R eigenvalue of A}, and
ran(P±

n ) = ker(±λnIdH − A) for every n ∈ N with λn ̸= 0.

We leave the details to the reader. In view of properties (i) and (ii) this establishes
the desired uniqueness.
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5.6 Comments and Further Reading
The original work [Jac56] of Jacobs from 1956 establishes a decomposition for
bounded abelian semigroups of operators on reflexive Banach spaces. A more general
version of the splitting result was later established by de Leeuw and Glicksberg in
[dLG61]. There are now several different versions of this decomposition and several
techniques of proof (see, e.g., [EFHN15, Chapter 16]). The term discrete spectrum
(also known as pure point spectrum) is related to an approach via a decomposition of
spectral measures into a discrete and continuous part (see, e.g., [EFHN15, Remark
18.21]).4 Our proof here follows the ideas discussed in the introduction of [EHK24]
which are, however, already present in many earlier texts on ergodic theory.

4The terminological origin of weak mixing will become clear in Lecture 7.
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5.7 Exercises
Exercise 5.1. Prove Proposition 5.1.3.

Exercise 5.2. For the symmetric group S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} of
degree 3 show that Uσ(v1, v2, v3) = (vσ−1(1), vσ−1(2), vσ−1(3)) for (v1, v2, v3) ∈ C3 and
σ ∈ S3 defines a unitary representation U : S3 → U (C3), σ 7→ Uσ. Determine a de-
composition of C3 =M1⊕M2 into irreducible invariant finite-dimensional subspaces
as in Proposition 5.1.3.

Exercise 5.3. Show that the following maps are group isomorphisms.

(i) T→ Z∗, z 7→ χz where χz(m) := zm for m ∈ Z and z ∈ T.

(ii) Z/nZ → (Z/nZ)∗, k + nZ 7→ χk+nZ with χk+nZ(l + nZ) = e2πi
lk
n for k, l ∈ Z,

where n ∈ Z.

(iii) G∗
1 × G∗

2 → (G1 × G2)
∗, (χ, ϱ) 7→ χ ⊗ ϱ with (χ ⊗ ϱ)(x, y) = χ(x)ϱ(y) for

(x, y) ∈ G1 ×G2, χ ∈ G∗
1 and ϱ ∈ G∗

2, where G1, G2 are any abelian groups.

Exercise 5.4. Equip Cn for n ∈ N with the standard inner product.

(i) Show that for n ∈ N the map Cn → (Cn)′, v 7→ φv with φv(u) :=
∑n

i=1 uivi for
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Cn is a unitary operator.

(ii) Show that for n,m ∈ N there is a unique unitary operator Ψ: Cn⊗Cm → Cnm

with

Ψ(u⊗ v) = (u1v1, . . . , u1vm, u2v1, . . . . . . . . . , unv1, . . . , unvm)

for all u = (u1, . . . , un) ∈ Cn and v = (v1, . . . , vm) ∈ Cm.

Exercise 5.5. Let V ∈ U (H) be a unitary operator on a Hilbert space H and
(an)n∈N be a bounded sequence in C such that the limit limN→∞

1
N

∑N−1
n=0 anz

n exists
for every z ∈ T. Show that for each f ∈ H the limit limN→∞

1
N

∑N−1
n=0 anV

nf exists.
Hint: Use Proposition 5.3.3 to show that limN→∞

1
N

∑N−1
n=0 anV

nf = 0 for every
f ∈ Hwm.

Exercise 5.6. We consider the Hilbert space ℓ2 of square-summable sequences
(an)n∈N in C with the inner product given by ((an)n∈N|(bn)n∈N) :=

∑∞
n=1 anbn for

(an)n∈N, (bn)n∈N ∈ ℓ2.
(i) Show that for a double sequence c = (cn,m)n,m∈N of complex numbers C with
∥c∥2 :=

∑∞
n=1

∑∞
m=1 |cn,m|2 <∞ the map

Ac : ℓ
2 → ℓ2, (an)n∈N 7→

( ∞∑
m=1

cn,mam

)
n∈N
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is a Hilbert–Schmidt operator with ∥Ac∥HS = ∥c∥2.
(ii) Show that (Ac)

∗ = Ac∗ for each double sequence c = (cn,m)n,m∈N of complex
numbers with ∥c∥2 <∞, where (c∗)n,m := cm,n for n,m ∈ N. In particular, Ac
is self-adjoint precisely when cn,m = cm,n for all n,m ∈ N.

(iii) Show that for every Hilbert-Schmidt operator A : L2 → ℓ2 there is a unique
double sequence c of complex numbers with ∥c∥2 <∞ such that A = Ac.

Exercise 5.7. Let H be a Hilbert space and consider the space HS(H) of Hilbert–
Schmidt operators. Let E be an orthonormal basis for H and consider the set F of
all finite subsets of E directed by set inclusion. Then

(A|B)HS =
∑
e∈E

(Ae|Be) := lim
F∈F

∑
e∈F

(Ae|Be)

for all forA,B ∈ HS(H) defines an inner product on HS(H) with ∥A∥HS =
√

(A|A)HS

for A ∈ HS(H).5

5You may use the following fact (or prove it as a bonus exercise): If (xi)i∈I is a Cauchy net
in a complete metric space (X, dX), i.e., for every ε > 0 there is some i0 ∈ I with dX(xi, xj) ≤ ε
for all i, j ≥ i0, then (xi)i∈I converges to some x ∈ X.
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Lecture 6

In the first part of this lecture we introduce compact groups and show that their
strongly continuous unitary representations always have discrete spectrum, i.e., the
weakly mixing part of the JdLG-decomposition is trivial. In the second part of
the lecture we then prove a famous representation and classification result due to
Halmos and von Neumann for ergodic measure-preserving systems with discrete
spectrum.

6.1 Compact Groups and Discrete Spectrum
In the previous lecture we have seen that for any unitary representation U : G →
U (H) of a group G we obtain a decomposition H = Hds⊕Hwm of the Hilbert space
H into the discrete spectrum part Hds and the weakly mixing part Hwm. We now
study situations when the weakly mixing part is trivial.

Definition 6.1.1. A unitary representation U : G → U (H) of a group G has
discrete spectrum if

H = Hds =
⋃
{M ⊆ H |M invariant finite-dimensional subspace}.

To obtain examples for this situation, we consider groups G endowed with additional
structure.

Definition 6.1.2. A group G equipped with a topology is called a topological
group if the multiplication and inversion maps

· : G×G→ G, (x, y) 7→ xy
−1 : G→ G, x 7→ x−1

are both continuous (where G × G is endowed with the product topology). It is a
compact group if, in addition, the topology on G is compact1.

1Recall that this includes the Hausdorff property.
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One can readily check that for a topological group G the left and right rotations
lx, rx : G→ G with lx(y) := xy and rx(y) = yx for y ∈ G are homeomorphisms.

Basic examples of compact groups include every finite group with the discrete topol-
ogy, as well as the d-torus Td with componentwise multiplication, the groups O(d)
of orthogonal d× d-matrices and U (d) of unitary d× d-matrices (with the natural
Euclidean topology) for d ∈ N. Compact groups admit a rich structure theory (see,
e.g., [HM20]) with many applications in mathematics and physics. The following is
one of their important features (see, e.g., [Fol15, Section 2.2]).

Theorem and Definition 6.1.3. For a compact group G there is a unique regular
Borel probability measure mG ∈ P(G) such that

(i) mG(xA) = mG(A) for every Borel set A ⊆ G and x ∈ G.

This is called the Haar measure of G and also has the following properties.

(ii) mG(Ax) = mG(A) for every Borel set A ⊆ G and x ∈ G.

(iii) mG(A
−1) = mG(A) for every Borel set A ⊆ G.

(iv) mG(O) > 0 for every non-empty open set O ⊆ G.

A proof of Theorem 6.1.3 in the special case of compact abelian groups is discussed
in Exercise 6.2. From now on, we equip every compact group G with the Borel
σ-algebra B(G) and the Haar measure mG.

Remark 6.1.4. Via Proposition 1.1.4 (ii) properties (i) - (iii) of Theorem 6.1.3
translate to the following assertions: For any integrable function f : G→ C also the
functions f ◦ lx, f ◦ rx, : G→ C for x ∈ G and f ◦ −1 : G→ C are integrable with∫

G

f(y) dmG(y) =

∫
G

f(xy) dmG(y) =

∫
G

f(yx) dmG(y) =

∫
G

f(y−1) dmG(y).

Moreover, Theorem 6.1.3 (iv) implies that
∫
|f | dmG > 0 for every f ∈ C(G) \ {0}.

Thus, the canonical map C(G) → L2(G) from Lemma 4.1.7 is injective, and we
identify C(G) with a dense linear subspace of L2(G).

We demonstrate this situation in a concrete case.

Example 6.1.5. Consider the torus G = T. Then the unital, positive linear map
C(T)→ C, f 7→

∫ 1

0
f(e2πit) dt defines a regular Borel probability measure µ ∈ P(T).

For f ∈ C(T) and an element b = e2πis ∈ T with s ∈ [0, 1) we obtain∫ 1

0

f(be2πit) dt =

∫ 1+s

s

f(e2πit) dt =

∫ 1

s

f(e2πit) dt+

∫ 1+s

1

f(e2πit) dt

=

∫ 1

s

f(e2πit) dt+

∫ s

0

f(e2πi(t+1)) dt =

∫ 1

0

f(e2πit) dt
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since the exponential function is 2πi-periodic. By Lemma 3.2.10 this shows that
µ = mT is the Haar measure of T.

If we consider unitary representations of topological (in particular, compact) groups,
it is natural to demand some kind of continuity.

Definition 6.1.6. A unitary representation U : G → U (H) of a topological group
G is strongly continuous if G→ H, x 7→ Uxf is continuous for every f ∈ H.

Strong continuity is preserved by the two important constructions from Section
5.3:

Lemma 6.1.7. Let G be a topological group.

(i) If U : G → U (H) is a strongly continuous unitary representation of G, then
its dual representation U : G→ U (H ′) is also strongly continuous.

(ii) If Ui : G → U (Hi) are strongly continuous unitary representations of G for
i = 1, 2, then their tensor product representation U1 ⊗ U2 : G → U (H1 ⊗H2)
is also strongly continuous.

Proof. Part (i) follows directly from the definition. For part (ii) observe that by
Exercise 6.3 it suffices to show “weak continuity”, i.e., we have to prove that each
map G→ C, x 7→ ((U1 ⊗ U2)xf |g) for f, g ∈ H1 ⊗H2 is continuous. Using linearity
and an approximation argument one can readily reduce the assertion to the case of
simple tensors f = f1⊗ f2 and g = g1⊗ g2 for f1, g1 ∈ H1 and f2, g2 ∈ H2. But then

G→ C, x 7→ ((U1 ⊗ U2)xf |g) = ((U1)xf1|g1) · ((U2)xf2|g2)

is continuous since U1 and U2 are strongly (and in particular weakly) continuous.

The following are important examples for strongly continuous unitary representa-
tions.

Proposition and Definition 6.1.8. For every compact group G the maps

L : G→ U (L2(G)), x 7→ Lx

R : G→ U (L2(G)), x 7→ Rx

with Lxf := f ◦ lx−1 and Rxf := f ◦ rx for f ∈ L2(G) and x ∈ G are strongly
continuous unitary representations. We call L and R the left and right regular
representation of G, respectively.

For the proof we use the following topological lemma, see Exercise 6.4.

Lemma 6.1.9. Let Ω be a topological space, and K and L be compact spaces. As-
sume further that φ : Ω×K → L, (ω, x) 7→ φω(x) is continuous with respect to the
product topology. Then for every f ∈ C(L) the map Ω → C(K), ω 7→ f ◦ φω is
continuous with respect to the supremum norm on C(K).
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Proof of Proposition 6.1.8. With Remark 6.1.4 it is easy to see that L and R are
well-defined unitary representations. We now show that L is strongly continuous
(the proof for R is similar). First pick a continuous function f ∈ C(G). Let x ∈ G
and ε > 0. Since the map G×G→ G, (y, z) 7→ y−1z = ly−1(z) is continuous, we can
apply Lemma 6.1.9 to find a neighborhood O of x ∈ G with ∥f ◦ ly−1−f ◦ lx−1∥∞ ≤ ε
for every y ∈ O. But then

∥Lyf − Lxf∥2 = ∥f ◦ ly−1 − f ◦ lx−1∥2 ≤ ∥f ◦ ly−1 − f ◦ lx−1∥∞ ≤ ε

for every y ∈ O.

For general f ∈ L2(G) the result now follows by approximation: For ε > 0 we find
by Lemma 4.1.7 some g ∈ C(G) with ∥g − f∥2 ≤ ε. Since Uy is unitary, we also
have ∥Uyg−Uyf∥2 ≤ ε for every y ∈ G. The result therefore follows by the triangle
inequality.

Remark 6.1.10. With slight adjustments we can also cover representations on
homogeneous spaces.

(1) If G is a compact group and W ⊆ G is a closed subgroup, consider the quotient
space G/W with the quotient topology (see, e.g., [Sin19, Section 6.1]), which
is again a compact (Hausdorff!) space (see [Sin19, Proposition 12.3.2]).

(2) We can equip G/W with the Borel σ-algebra and the pushforward measure
mG/W := q∗mG with respect to the quotient map q : G → G/W, x 7→ xW .
Then mG/W (xA) = mG/W (A) for every x ∈ G and every Borel set A ⊆ G/W .

(3) Then U : G → U (L2(G/W )), f 7→ Uxf with Uxf(yW ) := f(x−1yW ) for
yW ∈ G/W , f ∈ L2(G/W ) and x ∈ G is also a strongly continuous unitary
representation.

We now prove the following important result.

Proposition 6.1.11. If U : G → U (H) is a strongly continuous unitary represen-
tation of a compact group G, then U has discrete spectrum.

For the proof we need the following observation.

Lemma 6.1.12. Assume that U : G → U (H) is a strongly continuous unitary
representation of a compact group G. Let further P be the orthogonal projection
onto the fixed space fix(U(G)). Then (Pf |g) =

∫
G
(Uxf |g) dmG(x) for all f, g ∈ H.

Proof. Take f, g ∈ H. For every x ∈ G we have UxP = P and this implies
(Pf |g) =

∫
G
(UxPf |g) dmG(x) (since mG is a probability measure). We choose a

sequence (
∑kn

i=1 λn,iUxn,i
f)n∈N in the convex hull co{Uxf | x ∈ G} converging to Pf

(see Theorem 3.1.5 (ii)). Then, by Lebesgue’s theorem and invariance of the Haar
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measure (cf. Remark 6.1.4),

(Pf |g) =
∫
G

(PUxf |g) dmG(x) = lim
n→∞

kn∑
i=1

λn,i

∫
G

(PUxxn,i
f | g) dmG(x)

= lim
n→∞

kn∑
i=1

λn,i

∫
G

(Uxf |g) dmG(x) =

∫
G

(Uxf |g) dmG(x).

Proof of Proposition 6.1.11. The representation U⊗U : G→ U (H⊗H ′) is strongly
continuous by Lemma 6.1.7. For f ∈ Hwm, we have f ⊗ f ∈ fix(U ⊗ U)⊥ and thus

0 =

∫
G

(Uxf ⊗ Uxf |f ⊗ f) dmG(x) =

∫
G

|(Uxf |f)|2 dmG(x)

by Lemma 6.1.12. By the last part of Remark 6.1.4 we have (Uxf |f) = 0 for every
x ∈ G, in particular for x = 1. Thus, (f |f) = 0 which yields f = 0.

Proposition 6.1.11 has interesting consequences for compact abelian groups. We first
introduce the following notion. Recall here from Definition 5.1.6 that G∗ denotes the
group of all characters (i.e., group homomorphisms χ : G→ T) of a group G.

Definition 6.1.13. Let G be a topological group. We call the subgroup

G′ := {χ : G→ T | χ continuous group homomorphism}

of G∗ the Pontryagin dual of G.

We obtain the following consequence of Proposition 6.1.11.

Proposition 6.1.14. Let U : G → U (H) be a strongly continuous unitary repre-
sentation of a compact abelian group G. Then H = lin

⋃
χ∈G′ ker(χ− U).

Proof. By Proposition 6.1.11 and Corollary 5.1.11 we haveH = lin
⋃
χ∈G∗ ker(χ−U).

However, if f ∈ ker(χ − U) \ {0} is an eigenvector with respect to some character
χ ∈ G∗, then χ is automatically continuous, since Uxf = χ(x)f for all x ∈ G and U
is strongly continuous.

We combine this with the following fundamental2 theorem about compact spaces
(see, e.g., [Sin19, Proposition 5.1.9 and Theorem 8.2.11] for a proof).

2In fact, we have already used the result implicitly at several points, e.g., in the proofs of
Theorem 3.2.6 and Lemma 4.1.7.
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Theorem 6.1.15 (Tietze). Let K be a compact space and A ⊆ K a closed subset.
Then any continuous function f : A→ [0, 1] can be extended to a continuous function
f : K → [0, 1].

In particular, Tietze’s theorem implies that for any compact space K, the continuous
functions f : K → C “separate points”, i.e., for x, y ∈ K with x ̸= y there is f ∈ C(K)
with f(x) ̸= f(y). We use this fact to prove the following.

Proposition 6.1.16. Let G be a compact abelian group. Then G′ separates points,
i.e., for x, y ∈ G with x ̸= y there is a continuous character χ : G → T with
χ(x) ̸= χ(y).

Proof. Take x, y ∈ G with x ̸= y. By Tietze’s theorem we find f ∈ C(G) with
f(x) ̸= f(y), hence (f ◦ lx)(1) ̸= (f ◦ ly)(1). This implies Lx−1 ̸= Ly−1 . Since the left
regular representation L has discrete spectrum, we find by Proposition 6.1.14 some
χ ∈ G′ and an eigenvector f ∈ L2(X) with respect to χ such that Lx−1f ̸= Ly−1f ,
hence χ(x−1)f ̸= χ(y−1)f , which implies χ(x) ̸= χ(y).

Corollary 6.1.17. Let G be a compact abelian group. For a subgroup W ⊆ G the
following assertions are equivalent.

(a) W is dense in G.

(b) If χ ∈ G′ satisfies χ(x) = 1 for every x ∈ W , then χ = 1.

Proof. The implication “(a) ⇒ (b)” follows by continuity of the elements χ ∈ G′.
We prove the converse implication “(b) ⇒ (a)” by contraposition. So assume that
W is not dense in G. Since the closure of W is again a subgroup (see Exercise 6.5),
we may assume that W is closed. We further pick some y ∈ G \W . Consider the
quotient space G/W which is compact (see Remark 6.1.10) and an abelian group. In
fact, it is again a compact abelian group (see again Exercise 6.5). Since yW ̸= 1W
we find by Proposition 6.1.16 some ϱ ∈ (G/W )′ with ϱ(yW ) ̸= 1 = ϱ(1W ). The
composition χ := ϱ ◦ q : G → T for the quotient map q : G → G/W thus yields a
continuous character χ ∈ G′ with χ(x) = 1 for all x ∈ W but χ ̸= 1.

Proposition 6.1.16 is particularly interesting in combination with the following fa-
mous approximation result (see, e.g., [Ped89, Theorem 4.3.4]).

Theorem 6.1.18 (Stone–Weierstraß). Let K be a compact space. Assume that
A ⊆ C(K) is a linear subpace with the following properties.

(i) f · g ∈ A for all f, g ∈ A.

(ii) f ∈ A for every f ∈ A.

(iii) 1 ∈ A.

(iv) For all x, y ∈ K with x ̸= y there is f ∈ A with f(x) ̸= f(y).
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Then A is dense in C(K).

This allows us to prove that the continuous characters form an orthonormal basis.
More generally, we have the following.

Proposition 6.1.19. Let G be a compact abelian group with Pontryagin dual G′.
For a subgroup W ⊆ G′ the following assertions are equivalent.

(a) W separates the points of G.

(b) W is an orthonormal basis of L2(G).

(c) W = G′.

We start with the following lemma.

Lemma 6.1.20. The Pontryagin dual G′ of a compact abelian group G defines an
orthonormal set in L2(G).

Proof. If χ ∈ G′, the left regular representation satisfies Lxχ(y) = χ(x−1y) =
χ(x)χ(y) for all x, y ∈ G. Thus, χ ∈ ker(χ − L) \ {0} is an eigenvector with
respect to χ. The claim thus follows from Proposition 5.1.10 (i).

Proof of Proposition 6.1.19. The implication “(c) ⇒ (a)” is Proposition 6.1.16. For
“(a) ⇒ (b)” observe that if W separates the points of G, then the linear hull A :=
linW satisfies all conditions of Theorem 6.1.18, hence is dense in C(G) with respect
to the supremum norm, and in particular with respect to the L2-norm. Since C(G)
defines a dense subspace of L2(G) by Lemma 4.1.7, we obtain that linW is a dense
subset of L2(G). Combined with Lemma 6.1.20 this shows that W is an orthonormal
basis, hence (b) follows. Finally, since G′ defines an orthonormal set, the implication
“(b)⇒ (c)” holds by the definition of an orthonormal basis as a maximal orthonormal
subset.

Example 6.1.21. Consider the torus T as a compact group. For every m ∈ Z the
map χm : T→ T, z 7→ zm is a continuous character. Since W := {χm | m ∈ Z} is a
subgroup of T′ and separates the points of T (all we need is χ1), we conclude from
Proposition 6.1.19 that W = T′. This readily yields that the map Z→ T′, m 7→ χm
is a group isomorphism.

We finish this section with an elegant proof of the following classical result.

Theorem 6.1.22 (Kronecker). Assume that a ∈ T is not a root of unity, i.e.,
am ̸= 1 for all m ∈ Z \ {0}. Then {an | n ∈ Z} is dense in T.

Proof. Take a ∈ T such that W := {an | n ∈ Z} is not dense in T. By Corollary
6.1.17 we find some character χ ∈ T′ with χ ̸= 1 and χ(an) = 1 for every n ∈ Z.
By Example 6.1.21 there is a unique m ∈ Z \ {0} with χ = χm. But this implies
am = χm(a) = 1.
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6.2 Systems with Discrete Spectrum
We now return to measure-preserving systems over our fixed abelian group Γ.

Definition 6.2.1. A measure-preserving system (X,T ) has discrete spectrum if
the induced Koopman representation UT : Γ→ U (L2(X)) has discrete spectrum.

It is clear from the definition that every trivial system (X, Id) (see Example 2.1.2)
has discrete spectrum. Here is a more interesting example.

Example 6.2.2. For a ∈ T the rotation la : T → T, z 7→ az induces a topologi-
cal dynamical system (T, τa) over Z via τa : Z → Homeo(T), k 7→ lka = lak . The
Haar measure mT is invariant, and hence we obtain a measure-preserving system
(T,B(T),mT, (τa)

∗). The left regular representation L : T → U (L2(T)) of T has
discrete spectrum by Propositions 6.1.8 and 6.1.11. Since

Uτ∗a (Z) = {U
k
la | k ∈ Z} ⊆ {Lb | b ∈ T} = L(T),

every invariant linear subspace with respect to L is also invariant with respect to
the Koopman representation Uτ∗a . Thus, (T,B(T),mT, (τa)

∗) has discrete spectrum.

We even obtain the following more general class of examples.

Example 6.2.3. Let c : Γ→ G be a group homomorphism from the abelian group Γ
to any compact abelian group G. This yields a topological dynamical system (G, τc)
via τc : Γ → Homeo(G), γ 7→ lc(γ). By the same reasoning as in Example 6.2.2
this gives rise to a measure-preserving system (G,B(G),mG, (τc)

∗) with discrete
spectrum. We call this a rotation system.

There is a nice characterization of ergodicity for these systems. Recall that for a
topological dynamical system (K, τ) we denote by P(K, τ) the set of its invariant
regular Borel probability measures (see Definition 3.2.9).

Proposition 6.2.4. For a group homomorphism c : Γ → G to a compact abelian
group G the following assertions are equivalent.

(a) The map c has dense range.

(b) P(G, τc) = {mG}.
(c) The system (G,B(G),mG, (τc)

∗) is ergodic.

Proof. We first prove the implication “(a) ⇒ (b)”. So assume that c(Γ) is dense in
G and take an invariant measure µ ∈ Pτc(G). For f ∈ C(G) we obtain from Lemma
6.1.9 that the map G→ C(G), x 7→ f ◦ lx is continuous, hence also

h : G→ C, x 7→
∫
G

f ◦ lx dµ
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is continuous. For every x ∈ c(Γ) we have h(x) =
∫
G
f dµ. Since c(Γ) is dense in G

and h is continuous, we even obtain
∫
f ◦ lx dµ = h(x) =

∫
G
f dµ for every x ∈ G.

By Lemma 3.2.10 this means that µ(xA) = µ(A) for every x ∈ G and every Borel
set A ⊆ G, and hence µ is the Haar measure mG.

The implication “(b)⇒ (c)” follows directly from Proposition 4.1.9. We finally prove
“(c) ⇒ (a)”. So assume that (G,B(G),mG, (τc)

∗) is ergodic. In view of Corollary
6.1.17 it suffices to show that χ ∈ G′ with χ(c(γ)) = 1 for every γ ∈ Γ implies χ = 1.
So take such χ ∈ G′ and observe that

U(τc)γχ(x) = χ(c(γ)x) = χ(c(γ))χ(x) = χ(x)

for all x ∈ G and γ ∈ Γ. Thus, χ ∈ fix(U(τc)∗), and by ergodicity we find d ∈ C
with χ = d1 (see Corollary 2.2.14). Since |χ| = 1 we have |d| = 1, and then d =
(d1|1) = (χ|1) ∈ {0, 1} by Lemma 6.1.20, which implies d = 1. Thus, χ = 1.

Example 6.2.5. For a ∈ T consider the rotation (T,B(T),mT, (τa)
∗) on the torus

from Example 6.2.2. By Theorem 6.1.22 and Proposition 6.2.4 this system is ergodic
precisely when a is not a root of unity.

It turns out that (up to an isomorphism) ergodic rotation systems are the only
ergodic measure-preserving systems with discrete spectrum.

Theorem 6.2.6 (Halmos–von Neumann Representation Theorem). Let (X,T ) be
an ergodic measure-preserving system with discrete spectrum. Then there is a group
homomorphism c : Γ→ G with dense range to a compact abelian group G such that
(X, T ) is isomorphic to the rotation system (G,B(G),mG, (τc)

∗).

The following related result shows that an ergodic system (X,T ) with discrete spec-
trum is (again up to an isomorphism) determined by the point spectrum σp(UT ) ⊆ Γ∗

(cf. Definition 5.1.8) of its Koopman representation UT : Γ→ U (L2(X)).

Theorem 6.2.7 (Halmos–von Neumann Uniqueness Theorem). Two ergodic measure-
preserving systems (X,T ) and (Y, S) with discrete spectrum are isomorphic if and
only if σp(UT ) = σp(US).

There is also a third aspect of the Halmos–von Neumann classification of ergodic
systems with discrete spectrum:

Theorem 6.2.8 (Halmos–von Neumann Realization Theorem). A subset W ⊆ Γ∗ of
the dual group Γ∗ is a subgroup if and only if there is an ergodic measure-preserving
system (X,T ) with discrete spectrum such that σp(UT ) = W .

With these three aspects, ergodic systems with discrete spectrum are completely un-
derstood: They are all isomorphic to rotation systems, and are (up to isomorphism)
in a one-to-one correspondence with the subgroups of the dual group Γ∗.
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As a first step towards the proof of these results, we establish the following descrip-
tion of the point spectrum of rotation systems.

Proposition 6.2.9. Let c : Γ→ G be a group homomorphism to a compact abelian
group G and consider the corresponding rotation system (G,B(G),mG, (τc)

∗). Then
the map c∗ : G′ → σp(U(τc)∗), χ 7→ χ ◦ c is a surjective group homomorphism. It is
an isomorphism if and only if c has dense range.

Proof. The map c∗ is well-defined since χ ∈ ker(χ◦ c−U(τc)∗)\{0} for every χ ∈ G′.
Moreover, it is clear that c∗ is a group homomorphism. To see that it is surjective,
observe that G′ is an orthonormal system of eigenvectors of U(τc)∗ with respect to
the eigenvalues χ◦ c (where χ ∈ G′). But by Proposition 6.1.19 it is an orthonormal
basis and hence by Proposition 5.1.10 there can be no further eigenvalues.

If c has dense range, then the map c∗ injective (since two continuous functions
agreeing on a dense subset have to be identical). On the other hand, if c(Γ) is not
dense in G, we find by Corollary 6.1.17 some χ ∈ G′ \ {1} with χ(c(γ)) = 1 for all
γ ∈ Γ, hence c∗(χ) = c∗(1).

Thus, for ergodic rotations (G,B(G),mG, (τc)
∗) we can identify the point spectrum

of the Koopman representation with the Pontryagin dual G′. The next auxiliary
result is purely group theoretic. We give a proof (even in a slightly more general
version) as a supplement at the end of this lecture.

Lemma 6.2.10. Let G be an abelian group and W ⊆ G a subgroup. Every group
homomorphism α : W → T can be extended to a group homomorphism α : G→ T.

The remaining lemmas needed for our proof of Theorems 6.2.6, 6.2.7, and 6.2.8
establish some “spectral theoretic properties” of measure-preserving systems.

Lemma 6.2.11. Let (X,T ) be a measure-preserving system. If f ∈ ker(χ−UT ) for
some χ ∈ Γ∗, then |f | ∈ fix(UT ).

Proof. For f ∈ ker(χ − UT ) we have UTγ |f | = |UTγf | = |χ(γ)f | = |f | for every
γ ∈ Γ. Thus, |f | ∈ fix(UT ) as claimed.

Lemma 6.2.12. For every ergodic measure-preserving system (X,T ) the following
assertions hold.

(i) Each eigenspace ker(χ−UT ) for χ ∈ Γ∗ is contained in L∞(X) and is at most
one-dimensional.

(ii) The point spectrum σp(UT ) is a subgroup of the dual Γ∗.

Proof. Note first that for χ ∈ G∗ and f ∈ ker(χ−UT )\{0} we have |f | = c1 for some
c ∈ (0,∞) by Lemma 6.2.11 and ergodicity (see Corollary 2.2.14). In particular,
ker(χ− UT ) ⊆ L∞(X).
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For eigenvectors f ∈ ker(χ−UT ) \ {0} and g ∈ ker(ϱ−UT ) \ {0} where χ, ϱ ∈ Γ∗ we
have fg ∈ ker(χϱ− UT ) \ {0}. Indeed for such f, g, χ, ϱ write |f | = c1 and |g| = d1
for some c, d ∈ (0,∞). Then UTγ (fg) = χ(γ)ϱ(γ)fg for every γ ∈ Γ by Proposition
1.3.3 and Corollary 1.3.8. Moreover, |fg| = cd, hence fg ̸= 0.

We prove (i) by applying this observation to χ = ϱ. Assume that f, g ∈ ker(χ −
UT ) \ {0} and write |g| = d1 for some d ∈ (0,∞) as above. Then fg ∈ ker(1 −
UT ) = fix(UT ). Thus, by ergodicity, we have fg = a1 for some a ∈ C \ {0}, hence
fd2 = (fg)g = ag. This implies that dimker(χ− UT ) ≤ 1.

For (ii) notice that the above observation shows σp(UT ) · σp(UT )−1 ⊆ σp(UT ). Since
UTγ1 = 1 for every γ ∈ Γ, the constant one-character 1 : Γ→ T, γ 7→ 1 is an element
of σp(UT ). Thus, σp(UT ) is indeed a subgroup of Γ∗.

Lemma 6.2.13. Let (X, T ) be an ergodic system with discrete spectrum. Then there
is an orthonormal basis {fχ | χ ∈ σp(UT )} of L2(X) contained in L∞(X) such that

(i) fχ ∈ ker(χ− UT ) for every χ ∈ σp(UT ), and

(ii) fχχ′ = fχfχ′ for all χ, χ′ ∈ σp(UT ).

Proof. Using Lemma 6.2.11 we choose for every eigenvalue χ ∈ σp(UT ) some gχ ∈
ker(χ− UT ) with |gχ| = 1 (and, in particular ∥gχ∥2 = 1). By Lemma 6.2.12 (i) and
Corollary 5.1.11 the linear hull E := lin{gχ | χ ∈ σp(UT )} is dense in L2(X), and
thus, by Proposition 5.1.10 (i), the set {gχ | χ ∈ σp(UT )} is an orthonormal basis.
Again using Lemma 6.2.12 (i) we find for χ, χ′ ∈ σp(UT ) some r(χ, χ′) ∈ C with
gχgχ′ = r(χ, χ′)gχχ′ (since gχgχ′ ∈ ker(χχ′ − UT )). Since |gχ| = |gχ′ | = |gχχ′| = 1,
we have r(χ, χ′) ∈ T.

Now consider the group L∞(X,T) := {f ∈ L∞(X) | |f | = 1} (with respect to mul-
tiplication) and the subgroup T · 1 := {c1 | c ∈ T} ⊆ L∞(X,T). By Lemma 6.2.10,
the group homomorphism α : T · 1 → T, c1 7→ c extends to a group homomor-
phism α : L∞(X,T)→ T. Then α(gχ)α(gχ′) = r(χ, χ′)α(gχχ′) for all χ, χ′ ∈ σp(UT ).
Setting fχ := α(gχ)

−1gχ for χ ∈ σp(UT ) we therefore obtain

fχfχ′ = α(gχ)
−1α(gχ′)−1r(χ, χ′)α(gχχ′)fχχ′ = fχχ′

for all χ, χ′ ∈ σp(UT ). Then {fχ | χ ∈ σp(UT )} is the desired orthonormal basis.

Proof of Theorems 6.2.6, 6.2.7, and 6.2.8. We start by showing that for every sub-
group W ⊆ Γ∗ we find an ergodic rotation (G,B(G),mG, (τc)

∗) with point spectrum
σp(U(τc)∗) = W .

To do so we “dualize”: The group G := W ∗ consists of all maps ϱ : W → T with
ϱ(χχ′) = ϱ(χ)ϱ(χ′), and hence defines a closed subset of the (by Tychonoff’s The-
orem 3.2.4 compact) product space TW , the set of all maps W → T. With the
subspace topology the group G becomes a compact abelian group. Moreover, the
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“point evaluation map” c : Γ → G, γ 7→ δγ given by δγ(ϱ) := ϱ(γ) for ϱ ∈ G = W ∗

and γ ∈ Γ is a group homomorphism.

What is the Pontryagin dual G′ of the compact group G? If χ ∈ W , then the point
evaluation εχ : G → T, ϱ 7→ ϱ(χ) is a continuous group homomorphism, hence an
element of G′. In this way we obtain a subgroup {εχ | χ ∈ W} of G′ which clearly
separates the points of G. By Proposition 6.1.19 this means G′ = {εχ | χ ∈ W}.
By Corollary 6.1.17 this implies that the map c has dense range: If χ ∈ W satisfies
εχ(c(γ)) = 1 for all γ ∈ Γ, then χ(γ) = δγ(χ) = εχ(δγ) = 1 for every γ ∈ Γ, hence
χ = 1 (and therefore also εχ = 1 ∈ G′). Hence c(Γ) is dense in G which means
that the rotation (G,B(G),mG, (τc)

∗) is ergodic (cf. Proposition 6.2.4). We further
conclude from Proposition 6.2.9 that σp(Uτc) = {εχ ◦ c | χ ∈ W} = W as desired.

We finally prove the three aspects of the Halmos-von Neumann classification result.

Realization: It is clear from Lemma 6.2.12 (ii) that the point spectrum σp(UT ) of an
ergodic system (X,T ) (with discrete spectrum) is a subgroup of the dual group Γ∗.
Conversely, if we start from a subgroup W ⊆ Γ∗, then by the above observation we
find an ergodic rotation (G,B(G),mG, (τc)

∗) with point spectrum σp(U(τc)∗) = W .
This has discrete spectrum by Example 6.2.3.

Uniqueness: It is clear that isomorphic systems give rise to the same point spec-
trum of their Koopman representations. Conversely, let (X, T ) and (Y, S) be er-
godic measure-preserving systems with discrete spectrum such that W := σp(UT ) =
σp(US). Let (eχ)χ∈σ and (fχ)χ∈σ be the corresponding orthonormal bases of L2(X)
and L2(Y ) as in Lemma 6.2.13. By basic linear algebra and Proposition A.1.1 there
is a unique unitary operator V : L2(X) → L2(Y ) with V eχ = fχ for every χ ∈ W .
By choice of the orthonormal bases, we obtain V (fg) = (V f)(V g) for all f, g ∈ E,
V f = V f for all f ∈ E, and V 1 = V e1 = f1 = 1. We obtain from Lemma 2.2.16
that V |f | = |V f | for every f ∈ lin{eχ | χ ∈ W}, and then even for every f ∈ L2(X)
by a density argument. Thus V is a bijective Markov embedding (cf. Exercise 2.8).
We show that V also “intertwines the dynamics”: For γ ∈ Γ we have

USγV eχ = USγfχ = χ(γ)fχ = V (χ(γ)eχ) = V UTγeχ

for every χ ∈ W . By linearity and continuity we obtain USγV = V UTγ for every
γ ∈ Γ. But this means that the systems (X,T ) and (Y, T ) are isomorphic, see
Exercise 2.7.

Representation: If (X,T ) is an ergodic system with discrete spectrum and W :=
σp(X,T ) is its point spectrum, we find by the preliminary observation an ergodic
rotation (G,B(G),mG, (τc)

∗) with σp(U(τc)∗) = W = σp(UT ). By the uniqueness
part, the systems (X,T ) and (G,B(G),mG, (τc)

∗) are isomorphic.
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6.3 Supplement: Extension of Characters
We follow the arguments of [DE09, Lemma 4.2.13] to show Lemma 6.2.10 in a more
general version. Here an abelian group Z is called divisible if for every x ∈ Z and
n ∈ N there is an “nth root” y ∈ Z, i.e., yn = x. Clearly the torus T is a divisible
group.

Lemma 6.3.1. Let G be an abelian group, W ⊆ G a subgroup and Z a divisible
group. Then every group homomorphism α : W → Z can be extended to a group
homomorphism α : G→ Z.

Proof. The proof uses Zorn’s lemma. LetM be the set of pairs (H, β) where H ⊆ G
is a subgroup containing W and β : H → G is a group homomorphism extend-
ing H. We obtain an order on M by setting (H1, β1) ≤ (H2, β2) for such pairs
(H1, β1), (H2, β2) ∈ M if H1 ⊆ H2 and β2|H1 = β1. Clearly (W,α) ∈ M, so M
is non-empty. Moreover, if C is a totally ordered subset of M, then a moment’s
thought reveals that we obtain an upper bound (A, δ) via A :=

⋃
(H,α)∈C H and

δ(x) := α(x) for x ∈ H and (H,α) ∈ C.
By an application of Zorn’s lemma we obtain a maximal element (H,α′) of M.
We claim that H = G, which then finishes the proof. Assuming the contrary, pick
x ∈ G \H.

If xm /∈ H for every m ∈ N, setting α′(yxn) := α′(y) for y ∈ H and n ∈ Z
yields an extension of α′ to a (well-defined) group homomorphism on the subgroup
{yxn | y ∈ H,n ∈ Z} which is impossible.

If xm ∈ H for some m ∈ N we take the smallest m ∈ N with this property. One
can then easily check that xn ∈ H can only hold for multiplies n = km wheren
k ∈ Z. Since Z is divisible, we find some z ∈ Z with zm = α′(xm). Then, if
y1x

n1 = y2x
n2 for y1, y2 ∈ H and n1, n2 ∈ Z, we have xn1−n2 = y−1

1 y2 ∈ H, hence
n1 − n2 = km for some k ∈ Z. This implies α′(y−1

1 y2) = zkm = zn1−n2 , and
consequently α′(y1)z

n1 = α′(y2)z
n2 . Therefore setting α′(yxn) := α′(y)zn for y ∈ H

and n ∈ Z again would give us a well-defined extension to a group homomorphism
on the subgroup {yxn | y ∈ H,n ∈ Z}.
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6.4 Comments and Further Reading
The first part of the lecture treats a (very small) part of abstract harmonic analysis
for locally compact (and in particular, compact) groups (see, e.g., [DE09], [Fol15],
[HR79] and [HR02]). Our proof that strongly continuous representations of compact
groups have discrete spectrum using the JdLG-decomposition is based on [EHK24,
Notes and Comments to Part II]. It is closely related to the usual proof of the
so-called Peter–Weyl theorem from abstract harmonic analysis (see, e.g., [Fol15,
Chapter 5]) which gives a precise description of the left and right regular repre-
sentation of a compact group in terms of matrix coefficients of irreducible unitary
representations.

One of the key features of locally compact abelian groups G is that, by suitably
topologizing the dual G′, there is a canonical isomorphism between G and its double
dual G′′ (see, e.g., [DE09, Chapter 3]). The results on compact abelian groups at
the end of Section 6.1 can be inferred from this general and powerful result, known
as the Pontryagin duality theorem. We implicitly use a special case of this duality
in the proof of Theorems 6.2.6, 6.2.7, and 6.2.8.

The classification of ergodic systems with discrete spectrum is one of the corner
stones of ergodic structure theory. It was established by Paul Halmos and John von
Neumann in [HvN42] for Γ = Z, and then later generalized in different directions
(see, e.g., the introduction of [HK23] for more information). Here we basically follow
the proof by Halmos given in his book, see [Hal56, Page 46–48]. We will apply the
representation part of the Halmos–von Neumann classification in Lecture 8.
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6.5 Exercises

Exercise 6.1. Show that for a unitary representation U : G→ U (H) of an abelian
group G the following assertions are equivalent.

(a) U has discrete spectrum.

(b) H has an orthonormal basis consisting of eigenvectors of U .

Exercise 6.2. Let G be a compact abelian group.

(i) Show that there is a unique Borel probability measure mG ∈ P(G) with
mG(xA) = mG(A) for every Borel set A ⊆ G and every x ∈ G.
Hint: Use Fubini’s theorem to prove uniqueness.

(ii) Show that mG(A) = mG(A
−1) for every Borel set A ⊆ G.

(iii) Show that mG(O) > 0 for every non-empty open set O ⊆ G.
Hint: Cover G with the sets xO for x ∈ G.

Exercise 6.3. Let U : G → U (H) be a unitary representation of a topological
group G. Show that the following assertions are equivalent.

(a) U is strongly continuous.

(b) U is weakly continuous, i.e., the map G → C, x 7→ (Uxf |g) is continuous for
all f, g ∈ H.

Exercise 6.4. Prove Lemma 6.1.9.

Exercise 6.5. Let G be a topological group and W ⊆ G a subgroup. Show the
following assertions.

(i) The closure W is also a subgroup.

(ii) If W is a normal subgroup, then also W is a normal subgroup.

(iii) The quotient map q : G→ G/W is open, i.e., q(O) is open in G/W for every
open subset O ⊆ G.

(iv) If W is a normal subgroup, then G/W is a topological group.

Exercise 6.6. Take a unitary representation U : G → U (H) of a group G. Show
that the following assertions are equivalent.

(a) U has discrete spectrum.

(b) There is a subset D ⊆ H such that the linear hull linD is dense in H and
{Uxf | x ∈ G} is compact for every f ∈ D.

(c) {Uxf | x ∈ G} is compact for every f ∈ H.

(d) The closure of the image U(G) in L (H) respect to the strong operator topol-
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ogy is a compact subgroup of U (H).3

You may use the following basic facts about nets in topological spaces (see, e.g.,
[Sin19, Chapters 4 and 5] for these and further properties).

(i) For a subset A ⊆ Ω of a topological space Ω and ω ∈ Ω we have ω ∈ A
precisely when there is a net (ωi)i∈I in A converging to ω.

(ii) A map ψ : Ω1 → Ω2 between topological spaces is continuous if and only if for
every net (ωi)i∈I in Ω1 converging to some ω ∈ Ω1 the net (ψ(ωi))i∈I converges
to ψ(ω).

(iii) Every net (ωi)i∈I in a compact space K has an accumulation point.

Hint: For “(b) ⇒ (d)” write S for the closure of U(G) and observe that S consists
of linear isometries. Show that the map

S →
∏
f∈D

{Uxf | x ∈ G}, V 7→ (V f)f∈D

has closed range and is a homeomorphism onto its range. Use Tychonoff’s Theorem
3.2.4 to prove compactness of S , and then use this to show that every element of
S is invertible, hence S ⊆ U (H). Finally, apply Exercise 6.5 (i).

Exercise 6.7. EquipX = [0, 1) with the Borel σ-algebra and the Lebesgue measure.
For α ∈ [0, 1) consider the measure-preserving map τα : X → X, x 7→ x + α from
Example 1.1.3 (iii)). Let further a := e2πiα and consider the rotation map la : T →
T, z 7→ az from Example 6.2.2. Show that q : [0, 1) → T, x 7→ e2πix defines an
isomorphism between the concrete measure-preserving systems over Z induced by
τα and la, respectively (cf. Remark 2.1.6).

3Recall that for a Hilbert space H the strong operator topology on L (H) is the subspace
topology when viewing L (H) as a subset of HH (the space of all maps H → H), i.e., it is the
smallest topology on L (H) such that all evaluation maps L (H)→ H, V 7→ V f for f ∈ H become
continuous. One can readily check that the group U (H) of unitary operators on H is a Hausdorff
topological group with respect to the strong operator topology.



Lecture 7

In this lecture we first study weakly mixing systems as a counterpart to systems with
discrete spectrum from the previous section. In the second part, we then introduce
uniquely ergodic topological dynamical systems. This will help us to deduce a
famous equidistribution result due to Weyl.

7.1 Weakly Mixing Systems

Recall that for any measure-preserving system (X,T ) we obtain, as a special case
of Theorem 5.3.4, a decomposition L2(X) = L2(X)ds ⊕ L2(X)wm for the induced
Koopman representation UT : Γ → U (L2(X)) of the abelian group Γ. We have
already studied systems where the weakly mixing part L2(X)wm of this splitting
vanishes. We now consider the other extreme.

Definition 7.1.1. A measure-preserving system (X,T ) is called weakly mixing if
L2(X)ds = C · 1.

Remark 7.1.2. Since the fixed space fix(UT ) is contained in the discrete spectrum
part L2(X)ds, every weakly mixing system (X,T ) is ergodic by Corollary 2.2.14.

One can deduce the following equivalent descriptions of weak mixing. The proof is
left as Exercise 7.2.

Proposition 7.1.3. Assume that (Fi)i∈I is a Følner net for the abelian group Γ.
Then for a measure-preserving system (X,T ) the following assertions are equivalent
for each p ∈ [1,∞).

(a) (X,T ) is weakly mixing.

(b) limi sup∥g∥2≤1
1

|Fi|
∑

γ∈Fi
|
∫
X
(Uγf)g− (

∫
X
f) · (

∫
X
g)|p = 0 for every f ∈ L2(X).

(c) limi
1

|Fi|
∑

γ∈Fi
|
∫
X
(Uγf)g − (

∫
X
f) · (

∫
X
g)|p = 0 for all f, g ∈ L2(X).

(d) limi
1

|Fi|
∑

γ∈Fi
|
∫
X
(Uγf)f − |

∫
X
f |2|p = 0 for every f ∈ L2(X).

101
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(e) limi
1

|Fi|
∑

γ∈Fi
|µX(Tγ(A) ∩B)− µX(A) · µX(B)|p = 0 for all A,B ∈ Σ(X).

Using condition (e) of Proposition 7.1.3 we explaining the terminology. If (X,T ) is a
weakly mixing system and A ∈ Σ(X), then “asymptotically”1 we have µX(Tγ(A)∩B)

µX(B)
≈

µX(A) for every B ∈ Σ(X) with µX(B) > 0. So in the long run the proportion of
Tγ(A) within any such B is approximately the same, just as, e.g., you find the same
proportion of an ingredient in each part of the glass of a well mixed milk shake.

To deduce yet another characterization, we need a concrete description of the Hilbert
space tensor product H⊗H ′ from Lecture 5 in the case H = L2(X) for a probability
space X. We start with the dual space H ′. For f ∈ L2(X) the notation f has two
different meanings: We use it for the complex conjugate, but also for the linear
functional L2(X) → C, g 7→ (g|f). The following result gives some justification for
this.

Proposition 7.1.4. Let X be a probability space. Then there is a unique unitary
operator Φ: L2(X) → L2(X)′ sending the complex conjugate f to the functional
f : L2(X)→ C for each f ∈ L2(X).

Proof. Write, for the moment, C(f) for the complex conjugate of f ∈ L2(X), and
φf : L

2(X) → C, g 7→ (g|f) for the induced linear functional. A moment’s thought
reveals that Φ: L2(X)→ L2(X)′, f 7→ φC(f) is the desired unitary map.

We now investigate the Hilbert space tensor product L2(X1)⊗L2(X2) for probability
spaces X1 and X2. For f1 ∈ L2(X1) and f2 ∈ L2(X2) we obtain an element f1⊙f2 ∈
L2(X1 ×X2) via (f1 ⊙ f2)(x1, x2) := f1(x1)f2(x2) for x1 ∈ X1 and x2 ∈ X2.

Proposition 7.1.5. Let X1 and X2 be probability spaces. Then there is a unique
unitary operator Ψ: L2(X1)⊗ L2(X2)→ L2(X1 ×X2) with Ψ(f1 ⊗ f2) = f1 ⊙ f2 for
all f1 ∈ L2(X1) and f2 ∈ L2(X2).

The proof of Proposition 7.1.5 is based on the following measure theoretic fact.

Lemma 7.1.6. The linear hull lin{1A1×A2 | A1 ⊆ X1, A2 ⊆ X2 measurable} is dense
in Lp(X1 ×X2) for all p ∈ [1,∞) and all probability spaces X1 and X2.

Since finite disjoint unions of measurable cylinder sets form an algebra over the
product space (see, e.g., [HS65, Theorem 21.3]), Lemma 7.1.6 is an easy consequence
of Lemmas 1.3.6 and 2.1.12.

Proof of Proposition 7.1.5. By Proposition 5.2.1 we obtain a unique linear map
Ψ: L2(X1) ⊗vect L

2(X2) → L2(X1 × X2) on the vector space tensor product with
Ψ(f1 ⊗ f2) = f1 ⊙ f2 for all f1 ∈ L2(X1) and f2 ∈ L2(X2). A short computation

1One can make this idea precise in other ways obtaining different concepts like strong or mild
mixing.



7.1. WEAKLY MIXING SYSTEMS 103

(similar to the one in the proof of Proposition 5.4.5) shows that Ψ is isometric with
respect to the tensor product norm and the L2-norm. Since L2(X1) ⊗vect L

2(X2) is
dense in L2(X1)⊗ L2(X2) by construction and Ψ has dense range by Lemma 7.1.6,
an application of Proposition A.1.1 yields the claim.

We obtain the following consequence.

Corollary 7.1.7. Consider homomorphisms T1 : Σ(Y1)→ Σ(X1) and T2 : Σ(Y2)→
Σ(X2) between measure algebras of probability spaces. Then there is a unique mea-
sure algebra homomorphism T1 × T2 : Σ(Y1 × Y2)→ Σ(X1 ×X2) with

(T1 × T2)(A1 × A2) = T1(A1)× T2(A2) for all A1 ∈ Σ(Y1) and A2 ∈ Σ(Y2).

Moreover, UT1×T2(f1 ⊙ f2) = UT1f1 ⊙ UT2f2 for all f1 ∈ L2(Y1) and f2 ∈ L2(Y2).

Proof. Consider the induced Markov embeddings UTi : L2(Yi)→ L2(Xi) for i = 1, 2.
By Propositions 5.2.4 and 7.1.5 there is a unique linear isometry U : L2(Y1 × Y2)→
L2(X1 ×X2) with U(f1 ⊙ f2) = UT1f1 ⊙ UT2f2 for all f1 ∈ L2(Y1) and f2 ∈ L2(Y2).

We show that U is a Markov embedding. Clearly, U(1 ⊙ 1) = 1 ⊙ 1. Moreover, if
f1, g1 ∈ L∞(Y1) and f2, g2 ∈ L∞(Y2), then

U((f1 ⊙ f2) · (g1 ⊙ g2)) = UT1(f1g1)⊙ UT2(f2g2) = U(f1 ⊙ f2) · U(g1 ⊙ g2)

by Corollary 1.3.8. Similarly to the proof of Theorem 6.2.7 we can use linearity and
Lemma 2.2.16 to see that |Uf | = U |f | for all f ∈ lin{f1 ⊙ f2 | f1 ∈ L∞(Y1), f2 ∈
L∞(Y2)}. Then use Lemma 7.1.6 to still obtain this equality for all f ∈ L2(Y1×Y2).
Thus U is indeed a Markov embedding.

By Theorem 1.3.7 we find a unique measure algebra homomorphism T1×T2 : Σ(Y1×
Y2)→ Σ(X1 ×X2) with U = UT1×T2 . By definition of U we have UT1×T2(f1 ⊙ f2) =
UT1f1 ⊙ UT2f2 for all f1 ∈ L2(Y1) and f2 ∈ L2(Y2). In particular, we obtain

1T1×T2(A1×A2) = UT1×T2(1A1 ⊙ 1A2) = UT11A1 ⊙ UT21A2 = 1T1(A1) ⊙ 1T2(A2)

= 1T1(A1)×T2(A2),

hence (T1×T2)(A1×A2) = T1(A1)×T2(A2) for all A1 ∈ Σ(Y1) and A2 ∈ Σ(Y2). Fi-
nally, the claimed uniqueness is an easy consequence of Lemma 7.1.6 and uniqueness
of U .

Remark 7.1.8. This construction is compatible with the product of measure-
preserving maps from Exercise 2.1: If τ1 : X1 → Y1 and τ2 : X2 → Y2 are measure-
preserving maps between probability spaces, then (τ ∗1 × τ ∗2 ) = (τ1 × τ2)∗.
Corollary 7.1.7 allows us to introduce products of measure-preserving systems.
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Definition 7.1.9. The product system (X1×X2, T1× T2) of measure-preserving
systems (X1, T1) and (X2, T2) is defined by (T1 × T2)γ := (T1)γ × (T2)γ for γ ∈ Γ.

We prove the following characterization of weak mixing via product systems.

Proposition 7.1.10. For a measure-preserving system (X,T ) the following asser-
tions are equivalent.

(a) The system (X,T ) is weakly mixing.

(b) The product system (X ×X,T × T ) is ergodic.

Proof. Note first that, as a consequence or Propositions 7.1.4 and 7.1.7, there is a
unique unitary operator V : L2(X) ⊗ L2(X)′ → L2(X ×X) with V (f ⊗ g) = f ⊙ g
for all f, g ∈ L2(X). Moreover, we have V ◦ (UTγ ⊗ UTγ ) = UTγ×Tγ ◦ V for every
γ ∈ Γ (check this identity on simple tensors).

For “(a) ⇒ (b)” assume that (X,T ) is weakly mixing, i.e., L2(X)ds = C · 1. By
Theorem 5.3.1 we obtain that fix(UT ⊗ UT ) = C · (1 ⊗ 1) in L2(X) ⊗ L2(X)′. But
then fix(UT×T ) = V (fix(UT ⊗ UT )) = C · (1⊙ 1), hence (X ×X,T × T ) is ergodic.

Now prove “(b) ⇒ (a)” by contraposition. If (X,T ) is not weakly mixing, we find
some eigenvector e ∈ L2(X) with respect to UT with (e|1) = 0 (see Proposition
5.1.10 (i) and Corollary 5.1.11). But then e⊗ e ∈ fix(UT ⊗UT ) (see Theorem 5.3.1)
with (e⊗ e|1⊗ 1) = |(e|1)|2 = 0. Thus, e⊙ e = V (e⊗ e) ∈ fix(UT×T ) is orthogonal
to V (1⊗ 1) = 1 ∈ L2(X ×X). Therefore (X ×X,T × T ) is not ergodic.

Example 7.1.11. For an infinite abelian group Γ consider the Bernoulli shift
(XΓ, τ ∗) defined by a probability space X from Example 2.1.8. One can readily
check that the map

q : XΓ ×XΓ → (X ×X)Γ, ((xγ)γ∈Γ, (yγ)γ∈Γ) 7→ ((xγ, yγ))γ∈Γ

induces an isomorphism between the product system (XΓ × XΓ, τ ∗ × τ ∗) and the
Bernoulli shift ((X × X)Γ, τ ∗) on the product space X × X. Thus, the system
(XΓ×XΓ, τ ∗×τ ∗) is ergodic by Proposition 2.1.11, and therefore the Bernoulli shift
(XΓ, τ ∗) is weakly mixing.

We conclude this section by proving a dichotomy between systems with discrete
spectrum and weakly mixing systems. For this we first establish the following result
using the concept of invariant Markov sublattices from Definition 2.2.9.

Proposition 7.1.12. Let (X,T ) be a measure-preserving system. Then L2(X)ds is
an invariant Markov sublattice of L2(X).

We use the following lemma (cf. Lemma 6.2.12 for ergodic systems).

Lemma 7.1.13. Let (X,T ) be a measure-preserving system. For every χ ∈ Γ∗ the
space ker(χ− UT ) ∩ L∞(X) is dense in ker(χ− UT ).
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Proof. Let f ∈ ker(χ− UT ) for some χ ∈ G∗. Then |f | ∈ fix(UT ) by Lemma 6.2.11.
Since fix(UT ) is an invariant Markov sublattice, we obtain (similarly to the proof of
Proposition 2.2.13) that

1[|f |≤n] = 1− 1[|f |−n1>0] = lim
m→∞

(1− inf(m sup(|f | − n1, 0),1)) ∈ fix(UT )

for every n ∈ N. By Corollary 1.3.8 we have UTγ (gh) = (UTγg) · (UTγh) for all
g, h ∈ L∞(X), and by approximation this still holds if h ∈ L2(X). This implies
UTγ (1[|f |≤n]f) = χ(γ)1[|f |≤n]f for every γ ∈ Γ. Therefore 1[|f |≤n]f ∈ ker(χ − UT ) ∩
L∞(X) for each n ∈ N and clearly f = limn→∞ 1[|f |≤n]f in L2(X).

Proof of Proposition 7.1.12. Consider F := lin
⋃
χ∈Γ∗ ker(χ − UT ) ∩ L∞(X). We

claim that F has the following properties, which, by Proposition 2.2.15, yield that
L2(X)ds is indeed an invariant Markov sublattice of L2(X).

(i) f · g ∈ F for all f, g ∈ F ,

(ii) f ∈ F for all f ∈ F ,

(iii) 1 ∈ F ,

(iv) UTγf ∈ F for all f ∈ F , γ ∈ Γ, and

(v) F is dense in L2(X)ds (with respect to the L2-norm).

For (i) first take f ∈ ker(χ− UT ) ∩ L∞(X) and g ∈ ker(ϱ− UT ) ∩ L∞(X) for some
χ, ϱ ∈ Γ∗. Then UTγ (fg) = χ(γ)ϱ(γ)fg for all γ ∈ Γ, hence fg ∈ F . Using a
linearity argument, we obtain (i). Parts (ii) – (iv) are proved in a similar manner
and (v) is a direct consequence of Corollary 5.1.11 and Lemma 7.1.13.

In view of Proposition 2.2.13 the discrete spectrum part L2(X)ds of a measure-
preserving system (X,T ) gives rise to a subsystem of (X,T ).

Definition 7.1.14. Let (X,T ) be a measure-preserving system. We then write
Jkro : (Xkro, Tkro) → (X,T ) for the extension JE : (XE, TE) → (X,T ) defined by
the invariant Markov sublattice E = L2(X)ds and call (Xkro, Tkro) the Kronecker
subsystem of (X,T ).

Remark 7.1.15. Given a measure-preserving system (X,T ) the Kronecker sub-
system is maximal among all subsystems of (X,T ) with discrete spectrum: If
J : (Y, S) → (X,T ) is any extension such that (Y, S) has discrete spectrum, then
UJ(L

2(Y )) ⊆ L2(X)ds = UJkro(L
2(Xkro)). The Markov embedding U := UJkro ◦

UJ : L
2(Y )→ L2(Xkro) then induces an extension (Y, S)→ (Xkro, Tkro) (see Exercise

2.7), hence (Y, S) is a subsystem of (Xkro, Tkro).

The proof of the following dichotomy between weak mixing and discrete spectrum
is now easy. Recall the definition of the trivial system ({0}, Id) from Example
2.1.2.
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Theorem 7.1.16 (Dichotomy Between Discrete Spectrum and Weak Mixing). For
a measure-preserving system (X,T ) exactly one of the following two alternatives is
true.

(1) (X,T ) is weakly mixing.

(2) (X,T ) has a subsystem (Y, S) with discrete spectrum which is not isomorphic
to the trivial system ({0}, Id).

Proof. In view of Remark 7.1.15 assertion (2) is equivalent to (Xkro, Tkro) not being
isomorphic to the trivial system ({0}, Id). This is the case precisely when L2(Xkro) ̸=
C · 1, see Exercise 2.7. Thus (2) is equivalent to UJkro(L2(Xkro)) = L2(X)ds ̸= C · 1,
which means that (X,T ) is not weakly mixing.

7.2 Uniquely Ergodic Systems

In Proposition 6.2.4 we have seen that a rotation system (G, τc) defined by a group
homomorphism c : Γ → G to a compact abelian group G with dense range has
precisely one invariant measure µ ∈ P(G, τc) (namely the Haar measure µ = mG).
We introduce a name for topological dynamical systems with this property.

Definition 7.2.1. A topological dynamical system (K, τ) is uniquely ergodic if
P(K, τ) has exactly one element.

The following is a characterization in terms of mean convergence.

Proposition 7.2.2. Let (Fi)i∈I be a Følner net for the abelian group Γ. For a
topological dynamical system (K, τ) the following assertions are equivalent.

(a) (K, τ) is uniquely ergodic.

(b) For every f ∈ C(K) the net ( 1
|Fi|
∑

γ∈Fi
f ◦ τγ)i∈I converges with respect to the

supremum norm to a constant function.

If (a) and (b) hold, then the limit in (b) for f ∈ C(K) is given by (
∫
K
f dµ) ·1 where

µ is the unique element of P(K, τ).

The proof uses the following basic topological lemma (cf. [Sin19, Section 4.3 and
Exercise 5.18]).

Lemma 7.2.3. If a net (xi)i∈I in a compact space K has precisely one accumulation
point x ∈ K, then limi∈I xi = x.

Proof of Proposition 7.2.2. We first show the implication “(a)⇒ (b)” and the asser-
tion about the limit. So let (K, τ) be uniquely ergodic with invariant measure µ ∈
P(K, τ). Assume that there is some f ∈ C(K) such that the net (1/|Fi|

∑
γ∈Fi

f◦τγ)i∈I
does not converge to (

∫
K
f dµ) ·1 in C(K) with respect to the supremum norm. This
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means that we can find some ε > 0 and for each i ∈ I some j(i) ≥ i as well as a
point xi ∈ K with ∣∣∣∣ 1

|Fj(i)|
∑
γ∈Fj(i)

f(τγ(xi))−
∫
K

f dµ

∣∣∣∣ ≥ ε. (7.1)

A moment’s thought reveals, as in Example 3.2.13, that the net (µi)i∈I in P(K)
given by µi := 1

|Fj(i)|
∑

γ∈Fj(i)
(τγ)∗δxi for i ∈ I is asymptotically invariant, hence all

its limit points are elements of P(K, τ) by Proposition 3.2.14. Thus, by Lemma
7.2.3, the net (µi)i∈I converges to µ with respect to the weak* topology. But then,
in particular,

lim
i∈I

1

|Fj(i)|
∑
γ∈Fj(i)

f(τγ(xi)) = lim
i∈I

1

|Fj(i)|
∑
γ∈Fj(i)

((τγ)∗δxi)(f) =

∫
K

f dµ,

contradicting inequality (7.1).

Now assume conversely that (b) holds. For every f ∈ C(K) let cf ∈ C with
limi∈I 1/|Fi|

∑
γ∈Fi

f ◦ τγ = cf · 1. For µ ∈ P(K, τ) and f ∈ C(K) we obtain∫
K
f dµ =

∫
K

1
|Fi|
∑

γ∈Fi
f ◦ τγ dµ for every i ∈ I. Since µ defines a continuous

linear functional on C(K), this implies

µ(f) = lim
i∈I

∫
K

1

|Fi|
∑
γ∈Fi

f ◦ τγ dµ =

∫
K

cf · 1 dµ = cf

for every f ∈ C(K). Thus, P(K, τ) can contain only a single element.

For further examples of uniquely ergodic systems we first introduce the following
concept.

Definition 7.2.4. Let (L, σ) be a topological dynamical system and G a compact
group. A continuous map c : Γ× L→ G is called a continuous cocycle if

c(γ1 + γ2, l) = c(γ1, σγ2(l)) · c(γ2, l) for all γ1, γ2 ∈ Γ and l ∈ L.

In this case, we call the topological dynamical system (L × G, σ ⋊ c) defined by
(σ ⋊ c)γ(l, x) := (σγ(l), c(γ, l)x) for l ∈ L, x ∈ G and γ ∈ Γ a skew-rotation
system.

As an easy consequence of the definition, a continuous cocycle c : Γ × L → G as
above satisfies c(0, l) = 1 for every l ∈ L and c(−γ, l) = c(γ, σ−γ(l))

−1 for all l ∈ L
and γ ∈ Γ. Moreover, it is a simple exercise to check that the skew-rotation system
induced by c is indeed a topological dynamical system.

Observe further that the definition of skew-rotation systems reduces to rotation
systems from Example 6.2.2 if we take (L, σ) to be a trivial system on L = {0}.
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Remark 7.2.5. If (L, σ) is a topological dynamical system over Γ = Z, then a
continuous cocycle c : Γ× L→ G to a compact group G is uniquely determined by
the continuous map c̃ := c(1, ·) : L→ G since the cocycle rule implies

c(m, l) =


c̃(σm−1(l)) · c̃(σm−2(l)) · · · c̃(σ1(l)) · c̃(l) if m ≥ 1,

1 if m = 0,

c̃(σ−m(l))
−1 · c̃(σ−(m−1)(l))

−1 · · · c̃(σ−1(l))
−1 if m ≤ −1,

for every l ∈ L. This establishes a one-to-one correspondence between continuous
cocycles c : Z× L→ G and continuous maps c̃ : L→ G.

The following is a standard example of a skew-rotation system.

Example 7.2.6. Consider the torus rotation (T, τa) for a ∈ T from Example 6.2.2.
Then with G = T and the continuous cocycle defined by the identity map c̃ :=
idT : T→ T we obtain a skew-rotation (T2, τa ⋊ c) on the 2-torus T2. It is given by
the homeomorphism T2 → T2, (x, y) 7→ (ax, xy).

We now consider invariant measures on skew-rotation systems. Given a topological
dynamical system (L, σ), a continuous cocycle c : Γ × L → G to a compact group
G and an invariant measure ν ∈ P(L, σ), a natural candidate would be the product
measure ν⊗mG with the Haar measure of G (see Definitions 2.1.7 and 6.1.3). There
is a small technical difficulty here since the product σ-algebra B(L)⊗B(G) might be
strictly smaller than the Borel σ-algebra B(L×G) (and hence the product measure is
not a Borel measure). However, one can fix this issue (see [Fol99, Section 7.4]).

Proposition 7.2.7. Let ν ∈ P(L) and µ ∈ P(K) for compact spaces K and L.
Then there is a unique regular Borel probability measure ν⊗µ : B(L × K) → [0, 1]
with (ν⊗µ)|B(L)⊗B(K) = ν ⊗ µ.

Remarks 7.2.8. (a) If the compact spaces L and K are metrizable (or, equiva-
lently, second countable, see, e.g., [AB06, Theorem 3.40]), then B(L ×K) =
B(L)⊗ B(K) and thus ν⊗µ = ν ⊗ µ, see again [Fol99, Section 7.4].

(b) Write (f ⊙ g)(x, y) := f(x)g(y) for (x, y) ∈ L × K where f ∈ C(L) and
g ∈ C(K). By an application of the Stone-Weierstraß theorem (see Theorem
6.1.18) the functions f ⊙ g for f ∈ C(L) and g ∈ C(K) span a dense subspace
of C(L×K). This implies that ν⊗µ ∈ P(L×K) can also be characterized as
the unique measure ϱ ∈ P(L×K) satisfying

∫
L×K f ⊙ g dϱ =

∫
L
f dν ·

∫
K
g dµ

for all f ∈ C(L) and g ∈ C(K).

The following is easy to check.

Proposition 7.2.9. Let (L, σ) be a topological dynamical system, c : Γ × L → G
a continuous cocycle to a compact group G and ν ∈ P(L, σ) an invariant measure.
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Then ν⊗mG ∈ P(L × G) is an invariant measure for the skew rotation system
(L×G, σ ⋊ c).

Notice that, if we write prL : L × G → L, (l, x) 7→ l for the projection onto the
first component, then (prL)∗(ν⊗mG) = ν. This leads us to the following uniqueness
property.

Theorem 7.2.10. Let (L, σ) be a topological dynamical system, c : Γ × L → G a
continuous cocycle to a compact group G and ν ∈ P(L, σ). If the measure ν⊗mG is
ergodic, then it is the only invariant measure µ ∈ P(L×G, σ⋊ c) with (prL)∗µ = ν.

Proof. Fix functions f ∈ C(L) and g ∈ C(G) and consider the product function f ⊙
g ∈ C(L×G) from Remark 7.2.8 (b). By ergodicity of ν⊗mG and the abstract mean
ergodic theorem (see Theorem 3.1.5 (ii)) we find c ∈ C and Vn =

∑kn
j=1 tn,jU(σ⋊c)γn,j

∈
co{U(σ⋊c)γ | γ ∈ Γ} for every n ∈ N such that limn→∞ Vn(f ⊙ g) = c1 in L2(L ×
G,B(L×G), ν⊗mG). Integrating yields c =

∫
L
f dµ ·

∫
G
g dmG (cf. Exercise 3.4).

We may assume, by passing to a subsequence, that (Vn(f ⊙ g))n∈N converges almost
everywhere with respect to ν⊗mG to (

∫
L
f dµ)(

∫
G
g dmG)1. We therefore obtain

that the Borel measurable set

A :=

{
(l, x) ∈ L×G

∣∣∣∣ lim
n→∞

kn∑
j=1

tn,jf(σγj(l))g(c(l, σγj(l))x) =

∫
L

f dν ·
∫
G

g dmG

}

has full measure with respect to ν⊗mG.

For y ∈ G the map qy : L×G→ L×G, (l, x) 7→ (l, xy−1) is a homeomorphism and
measure-preserving with respect to ν⊗mG. It maps A to the set

Ay :=

{
(l, x) ∈ L×G

∣∣∣∣ lim
n→∞

kn∑
j=1

tn,jf(σγj(l))g(c(l, σγj(l))xy) =

∫
L

f dν ·
∫
G

g dmG

}
.

Thus, Ay is also Borel measurable with full measure for each y ∈ G. We now check
that the same holds true for the intersection B :=

⋂
y∈GAy.

To do so, note first that the map G → C(G), y 7→ g ◦ ry (where ry(x) = xy for
x, y ∈ G) is continuous with respect to the supremum norm by Lemma 6.1.9. Thus,
since G is compact, also the image {g◦ry | y ∈ G} ⊆ C(G) is compact. In particular,
since compact metric spaces are separable (see, e.g., [AB06, Section 3.7]), we find a
countable subset D ⊆ G such that {g ◦ ry | y ∈ D} is dense in {g ◦ ry | y ∈ G}. We
claim that B =

⋂
y∈D Ay, which then implies that B is indeed measurable with full

measure.

So take z ∈ G and pick a sequence (zm)m∈N in D with limm→∞ ∥g◦rz−g◦rzm∥∞ = 0.
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Then

lim
m→∞

sup
(l,x)

∣∣∣∣ kn∑
j=1

tn,jf(σγj(l))g(c(l, σγj(l))xz)−
kn∑
j=1

tn,jf(σγj(l))g(c(l, σγj(l))xzm)

∣∣∣∣ = 0,

and a standard application of the triangle inequality yields
⋂
n∈NAzn ⊆ Az. This

implies
⋂
y∈D Ay ⊆ Az for every z ∈ G, hence B =

⋂
y∈D Ay as desired.

Since the map L → L × G, l 7→ (l, 1) is continuous, hence Borel measurable, we
obtain that the “section” B1 := {l ∈ L | (l, 1) ∈ B} is Borel measurable as well.
Moreover, for l ∈ L one can readily check that (l, 1) ∈ B precisely when (l, y) ∈ B for
some y ∈ G. Thus, pr−1

L (B1) = B and consequently ν(B1) = (ν⊗mG)(pr
−1
L (B1)) =

(ν⊗mG)(B) = 1.

Finally, take an invariant measure µ ∈ P(L×G, σ⋊ c) with (prL)∗µ = ν. Then also
µ(B) = µ(pr−1

L (B1)) = (prL)∗µ(B1) = ν(B1) = 1. Thus, we have

lim
n→∞

kn∑
j=1

tn,jf(σγj(l))g(c(l, σγj(l))x) =

∫
L

f dν ·
∫
G

g dmG

for almost every (l, x) ∈ L × G with respect to the measure µ. Using Lebesgue’s
theorem and invariance of the measure µ, we obtain by integrating on both sides
against µ that

∫
L×G f ⊙ g dµ =

∫
L
f dν ·

∫
G
g dmG. In view of Remark 7.2.8 (b) this

implies the desired equality µ = ν⊗mG.

Corollary 7.2.11 (Furstenberg). Let (L, σ) be a uniquely ergodic system with in-
variant measure ν and c : Γ×L→ G a continuous cocycle to a compact group G. If
ν⊗mG is ergodic, then the skew rotation (L×G, σ ⋊ c) is uniquely ergodic.

7.3 Weyl’s Equidistribution Theorem
As an application of the above we study equidistribution of sequences in the torus.

Definition 7.3.1. We say that a sequence (an)n∈N in T is equidistributed if

lim
N→∞

1

N

N∑
n=1

f(an) =

∫
T
f dmT =

∫ 1

0

f(e2πit) dt

for every f ∈ C(T).
Equivalent definitions are discussed in Exercise 7.3.

Theorem 7.3.2 (Weyl). Let p =
∑d

k=0 ckt
k ∈ R[t] be a real polynomial with at least

one irrational coefficient ck for k ∈ {1, . . . , d}. Then the sequence (e2πip(n))n∈N is
equidistributed.
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We first establish the following lemma.

Lemma 7.3.3. Assume that a ∈ T is not a root of unity and let k ∈ N. Then the
topological dynamical system over Z defined by the homeomorphism

τk : Tk → Tk, (z1, . . . , zk) 7→ (az1, z1z2, z2z3, . . . , zk−1zk)

is uniquely ergodic with invariant measure mTk = mT ⊗ · · · ⊗mT.

Proof. Observe that for k = 1 the system is just the torus rotation from Example
6.2.2 and hence uniquely ergodic (see Example 6.2.5). We now prove the result
via induction on k ∈ N. Notice that for k ∈ N the system (Tk+1, τk+1) is a skew-
rotation defined by the system (Tk, τk) and the continuous cocycle induced by the
map c̃ : Tk → T, (z1, . . . , zk) 7→ zk (cf. Remark 7.2.5). By Corollary 7.2.11 it
therefore suffices to show that (Tk,B(Tk),mTk , τ ∗k ) is ergodic for each k ∈ N.

So take f ∈ fix(Uτk) ⊆ L2(Tk). Using Proposition 6.1.19 it is easy to check (as
in Example 6.1.21) that the dual group (Tk)′ consists of the (pairwise distinct)
continuous characters χm : Tk → T for m = (m1, . . . ,mk) ∈ Zk given by χm(z) :=
zm1
1 · · · z

mk
k for every z = (z1, . . . , zk) ∈ Tk, and these form an orthonormal basis.

Hence we can consider the Fourier series expansion f =
∑

m∈Zk(f |χm)χm of f in
L2(Tk) (see Theorem A.2.5). We abbreviate bm := (f |χm) for m ∈ Zk and show that
bm = 0 for each m ̸= 0, hence f = b01 ∈ C · 1.

Since

(χm ◦ τk)(z) = (az1)
m1(z1z2)

m2 · · · (zk−1zk)
mk = am1χm1+m2,m2+m3,...,mk−1+mk,mk

(z)

for z = (z1, . . . , zk) ∈ Tk and m = (m1, . . . ,mk) ∈ Zk, we obtain

Uτkf =
∑

m1,...,mk∈Z

bm1+m2,...,mk−1+mk,mk
am1χm1+m2,...,mk−1+mk,mk

.

The map φ : Zk → Zk, (m1, . . . ,mk) 7→ (m1+m2, . . . ,mk−1+mk,mk) is a group iso-
morphism, so we can also write f =

∑
m∈Zk bφ(m)χφ(m). Since Uτkf = f , a compari-

son of the Fourier coefficients yields am1bm1,...,mk
= bφ(m1,...,mk) for allm1, . . . ,mk ∈ Z.

In particular, |bm| = |bφ(m)| for every m ∈ Zk.
Now fix m = (m1, . . . ,mk) ∈ Zk \{0} and consider two cases. Suppose first that the
images φj(m) for j ∈ N0 are all pairwise distinct. Then, since the Fourier coefficients
are square-summable (see again Theorem A.2.5), the identity |bm| = |bφj(m)| for all
j ∈ N0 implies bm = 0. In the second case we find i, j ∈ N0 with i < j such that
φi(m) = φj(m), hence φl(m) = m for l := j − i ≥ 1. By considering the (k − 1)th
component we obtain mk−1 = mk−1 + lmk, hence mk = 0. But then the same
argument allows us to show mk−1 = 0, and inductively m2 = · · · = mk = 0. This
implies that φ(m) = m, and thus am1bm = bm. Since m ̸= 0 and a is not a root of
unity, we have am1 ̸= 1, hence bm = 0.
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We also need the following observation. The proof is left as Exercise 7.4.

Lemma 7.3.4. Let (an)n∈N be a sequence in T and m ∈ N. If (anm+l)n∈N is equidis-
tributed for every l ∈ {0, . . . ,m− 1}, then (an)n∈N is equidistributed.

We now prove the equidistribution theorem.

Proof of Theorem 7.3.2. We show the claim by induction on the degree of p. So
take d ∈ N0 assume that (e2πiq(n))n∈N is equidistributed for all polynomials q =∑d−1

k=0 bkt
k ∈ R[t] of degree at most d− 1 having at least one irrational coefficient bj

for j ∈ {1, . . . , d − 1}. Let further p =
∑d

k=0 ckt
k ∈ R[t] be a polynomial of degree

d with some irrational coefficient.

Assume first that cd is rational. We then choose m ∈ N with mcd ∈ Z and consider
the polynomials ql :=

∑d
k=0 ck(tm + l)k − cd(tm)d ∈ R[t] for l ∈ {0, . . . ,m − 1}.

Then, since the exponential function is 2πi-periodic, a moment’s thought reveals
that e2πip(nm+l) = e2πiql(n) for every n ∈ N. Moreover, the polynomials ql have degree
at most d − 1 and have at least one irrational coefficient (aside from the constant
term) for every l ∈ {0, . . . ,m−1}. We conclude that the sequence (e2πip(nm+l))n∈N is
equidistributed for each l ∈ {0, . . . ,m− 1}. By Lemma 7.3.4 this implies the claim.

Assume now that cd is irrational. Then a := e2πicd(d!) ∈ T is not a root of unity.
We consider the corresponding system defined by the homeomorphism τd : Td →
Td from Lemma 7.3.3. By an induction argument, we obtain for all n ∈ N and
(z1, . . . , zd) ∈ Td that

τnd (z1, . . . , zd) = (anz1, a
(n2)zn1 z2, . . . , a

(nd)z
( n
d−1)

1 z
( n
d−2)

2 · · · znd−1zd).

Since the binomial coefficient polynomials
(
t
0

)
,
(
t
1

)
, . . .

(
t

d−1

)
∈ R[t] all have different

degrees, they form a basis of the vector space of real polynomials of degree at most
d−1. The polynomial p−cd(d!)

(
t
d

)
is of degree at most d−1, so we find r1, . . . , rd ∈ R

with p = cd(d!)
(
t
d

)
+r1 ·

(
t

d−1

)
+r2 ·

(
t

d−1

)
+· · ·+rd. Setting zj := e2πirj for j ∈ {1, . . . d}

we then have

e2πip(n) = a(
n
d)z

( n
d−1)

1 · · · znd−1zd for every n ∈ N.

Finally, take f ∈ C(T) and consider the induced continuous function g : Tk →
C, (x1, . . . , xk) 7→ f(xk). By Proposition 7.2.2 and Lemma 7.3.3 we obtain, in
particular, that

lim
N→∞

1

N

N∑
n=1

f(e2πip(n)) = lim
N→∞

1

N

N∑
n=1

g(τnd (z1, . . . , zd)) =

∫
Td

g dmTd =

∫
T
f dmT.
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7.4 Comments and Further Reading
There is much more to say about weakly (and strongly) mixing measure-preserving
systems, see, e.g., [EW11, Sections 2.7 and 2.8] and [EFHN15, Chapter 9]. Here we
have covered only the basics.

Our proof of Furstenberg’s theorem on unique ergodicity of skew-rotations as well
as its application to Weyl’s equidistribution theorem is based on [EFHN15, Section
10.15] and [EW11, Subsection 4.4.3] (see also [Fur14, Section III.3]). Skew-rotations
will also play a crucial part in a later stage of the course.

Hermann Weyl proved his equidistribution results already in 1916, see [Wey16].
More on equidistribution of sequences can, e.g., be found in Lecture 10 of the previ-
ous internet seminar on ergodic theory [EF19], as well as the comprehensive mono-
graph [KN74].
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7.5 Exercises
Exercise 7.1. (i) For a unitary operator V ∈ U (H) consider the corresponding

unitary representation UV : Z → U (H), m 7→ V m (cf. Remark 5.1.9). Show
that for each k ∈ N the discrete spectrum parts of UV and UV k coincide.
Hint: First use Exercise 6.6 to obtain

Hds = {f ∈ H | {V mf | m ∈ Z} compact}

for the discrete spectrum part of V .

(ii) Show that for a measure-preserving system (X,T ) over Z and k ∈ N the
following assertions are equivalent.

(a) (X,T ) is weakly mixing.

(b) (X,T k) is weakly mixing.

Exercise 7.2. (i) Let (Fi)i∈I be a Følner net for the abelian group Γ. Show that
the following assertions are equivalent for a bounded map Γ→ [0,∞), γ 7→ rγ.

(a) limi∈I
1

|Fi|
∑

γ∈Fi
rpγ = 0 for some p ∈ [1,∞).

(b) limi∈I
1

|Fi|
∑

γ∈Fi
rpγ = 0 for every p ∈ [1,∞).

(ii) Prove Proposition 7.1.3.

Exercise 7.3. Call a subset I ⊆ T a compact interval in T if I is compact and
connected. One can check that this is precisely the case when I is the image of a
compact interval [a, b] ⊆ R with respect to the continuous map R → T, t 7→ e2πit.
Now show that the following assertions are equivalent for a sequence (an)n∈N in T.

(a) The sequence (an)n∈N is equidistributed.

(b) limN→∞
1
N

∑N
n=1 a

m
n = 0 for every m ∈ Z \ {0}.

(c) For every compact interval I ⊆ T we have

lim
N→∞

|{n ∈ {1, . . . , N} | an ∈ I}|
N

= mT(I).

Hint: For “(a) ⇒ (c)” construct for ε > 0 continuous functions f, g ∈ C(T) with
f ≤ 1I ≤ g and

∫
T g − f dmT ≤ ε. For the converse implication “(c) ⇒ (a)”

approximate f ∈ C(T) uniformly by linear combinations of characteristic functions
of compact intervals.

Exercise 7.4. Prove Lemma 7.3.4.



Lecture 8

In the first part of this lecture, we will present an ergodic proof of Roth’s theorem,
which is the special case of Szemerédi’s theorem for three-term arithmetic progres-
sions, using the JdLG-decomposition. In the second part, we will introduce disinte-
gration of measures and relative products of probability spaces that will be used in
the following lectures to extend this ergodic proof of Roth’s theorem to encompass
Szemerédi’s theorem for arithmetic progressions of arbitrary length.

In both parts, the conditional expectation operator plays a crucial role, which we
now pause to introduce.

8.1 Conditional expectation
Let X, Y be probability spaces and let U : L2(Y )→ L2(X) be a Markov embedding.
By Definition and Proposition 1.3.2, U(L2(Y )) is a closed linear subspace of L2(X).
Let P denote the orthogonal projection of L2(X) onto U(L2(Y )). Using the injec-
tivity of Markov embeddings (Lemma 1.3.3 (ix)), we define E(f | Y ) for f ∈ L2(X)
by

E(f | Y ) ∈ L2(Y ), U(E(f | Y )) = P (f). (8.1)

The following diagram illustrates this situation:

L2(Y ) U(L2(Y ))

L2(X)

U

U−1

E(·|Y )
P

Lemma 8.1.1. Let X, Y be probability spaces and let U : L2(Y ) → L2(X) be a
Markov embedding. The conditional expectation operator f 7→ E(f | Y ) defined
for f ∈ L2(X) by (8.1) has the following properties:

115
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(i) f 7→ E(f | Y ) is a linear operator from L2(X) to L2(Y ).

(ii) If f ≥ 0, then E(f | Y ) ≥ 0.

(iii) If f ∈ L2(Y ), then E(U(f) | Y ) = f . In particular, E(1 | Y ) = 1.

(iv) If f ∈ L2(X), g ∈ L∞(Y ), then E(fU(g) | Y ) = gE(f | Y ).

(v) For f ∈ L2(X),
∫
X
f dµX =

∫
Y
E(f | Y ) dµY .

(vi) For f ∈ L2(X), the conditional expectation E(f | Y ) is the unique element of
L2(Y ) satisfying ∫

Y

E(f | Y )h dµY =

∫
X

fU(h) dµX

for all h ∈ L∞(Y ).

(vii) For f ∈ L2(X), |E(f | Y )|2 ≤ E(|f |2 | Y ).

(viii) The conditional expectation operator extends to a linear operator from L1(X)
to L1(Y ) satisfying the properties (a)–(e). Moreover, it maps each Lp(X) to
Lp(Y ), for 1 ≤ p ≤ ∞, with ∥E(f | Y )∥Lp(Y ) ≤ ∥f∥Lp(X) for every f ∈ Lp(X).

(ix) If 0 ≤ f1 ≤ f2 ≤ . . . is a monotone sequence and f is an element in L2(X)
such that (fn)n∈N converges to f almost surely, then E(fn | Y ) converges to
E(f | Y ) almost surely.

(x) If (fn)n∈N is a sequence and f is an element in L2(X) such that fn converges
to f almost surely and there is g ∈ L1(X) with |fn| ≤ g almost surely for all
n, then E(fn | Y ) converges to E(f | Y ) almost surely.

Proof. Properties (i)–(viii) follow from the properties of Markov embeddings and
orthogonal projections, while property (ix) follows from property (ii), the charac-
terization in (vi) and the monotone convergence theorem, and property (x) can be
proved from (ix), we leave the details to the interested reader (cf. [EFHN15, Section
13.3]).

Recall that if J : Σ(Y )→ Σ(X) is a measure algebra homomorphism of probability
spaces X and Y , then by Proposition 1.3.4, there is a unique Markov embedding
UJ : L

2(Y ) → L2(X) such that UJ(1A) = 1J(A) for all A ∈ Σ(Y ). In this situation
we consider the conditional expectation operator E( · | Y ) with respect to UJ .

The conditional expectation intertwines with the dynamics of extensions:

Proposition 8.1.2. Let J : (Y, S)→ (X,T ) be an extension of measure-preserving
systems. Then for all f ∈ L2(X) and γ ∈ Γ,

E(UTγ (f) | Y ) = USγ (E(f | Y )).



8.2. ROTH’S THEOREM 117

Proof. Let f ∈ L2(X) and γ ∈ Γ. By Lemma 8.1.1(vi), the definition of extensions
in Definition 2.2.1, and the unitarity of UTγ , for every h ∈ L∞(Y ),∫

Y

E(UTγ (f) | Y )h dµY =

∫
X

UTγ (f)UJ(h) dµX

=

∫
X

fUJ(US−γ (h)) dµX

=

∫
Y

E(f | Y )US−γ (h) dµY

=

∫
Y

USγ (E(f | Y ))h dµY .

Since L∞(Y ) is dense in L2(Y ), we conclude the claim

E(UTγ (f) | Y ) = USγ (E(f | Y )).

8.2 Roth’s Theorem
We are now ready to prove a special case of Szemerédi’s theorem.

Theorem 8.2.1 (Roth). Let A ⊆ N with d(A) > 0. Then A contains arithmetic
progressions of length 3.

In view of Furstenberg’s correspondence principle (see Theorem 4.2.8) this is a con-
sequence of the following result.

Theorem 8.2.2. Let (X, T ) be an ergodic measure-preserving system over Γ = Z.
For every f ∈ L∞(X) with f ≥ 0,

∫
X
fdµX > 0 the limit

lim
N→∞

1

N

N−1∑
n=0

∫
X

f · Un
T f · U2n

T f

exists and is strictly positive.

The proof uses the following estimate for bounded sequences in a Hilbert space. An
elementary, but rather technical proof will be discussed as a supplement at the end
of this lecture.

Lemma 8.2.3 (van der Corput). For every bounded sequence (an)n∈N0 in a Hilbert
space H the inequality

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

an

∥∥∥∥∥
2

≤ lim sup
M→∞

1

M

M−1∑
m=0

lim sup
N→∞

1

N

N−1∑
n=0

Re (an|an+m)
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holds.

This leads to the following observation about the weakly mixing part of a measure-
preserving system.

Lemma 8.2.4. Let (X,T ) be an ergodic measure-preserving system over Γ = Z.
Assume that f, g ∈ L∞(X) with f ∈ L2(X)wm or g ∈ L2(X)wm, then

lim
N→∞

1

N

N−1∑
n=0

Un
T f · U2n

T g = 0

in L2(X).

Proof. To apply the van der Corput lemma consider an := (Un
T f) ·(U2n

T g) for n ∈ N0.
For n,m ∈ N0 we then have

(an|an+m) =
∫
X

(Un
T f) · (U2n

T g) · (Un+m
T f) · (U2n+2m

T g)

=

∫
X

Un
T (f · (Un

T g) · (Um
T f) · (Un+2m

T g)) =

∫
X

f · (Um
T f) · Un

T (g · U2m
T g).

Since the system is ergodic, we can use Exercise 3.4 to obtain

lim
N→∞

1

N

N−1∑
n=0

(an|an+m) =
(∫

X

f · Um
T f

)
·
(∫

X

g · U2m
T g

)
.

for all m ∈ N0. By the Cauchy–Schwarz inequality applied to the second integral,
we obtain

1

M

M−1∑
m=0

∣∣∣∣(∫
X

f · Um
T f

)
·
(∫

X

g · U2m
T g

)∣∣∣∣ ≤ ∥g∥2 · 1

M

M−1∑
m=0

|(Um
T f |f)|

for every M ∈ N. Since f ∈ L2(X)wm, by Proposition 5.3.3 and Exercise 7.2 (i)

lim
M→∞

1

M

M−1∑
m=0

∣∣∣∣(∫
X

f · Um
T f

)
·
(∫

X

g · U2m
T g

)∣∣∣∣ = 0.

Similarly, if g ∈ L2(X)wm, we have

1

M

M−1∑
m=0

∣∣∣∣(∫
X

f · Um
T f

)
·
(∫

X

g · U2m
T g

)∣∣∣∣ ≤ 2∥f∥2 · 1

2M

2M−1∑
m=0

|(Um
T g|g)|
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for every M ∈ N and we again obtain1

lim
M→∞

1

M

M−1∑
m=0

∣∣∣∣(∫
X

f · Um
T f

)
·
(∫

X

g · U2m
T g

)∣∣∣∣ = 0.

In both cases Lemma 8.2.3 yields the claim.

Proof of Theorem 8.2.2. Take f ∈ L∞(X) with f ≥ 0,
∫
X
fdµX > 0. Suppose first

that (X,T ) is a measure-preserving system over Γ = Z with discrete spectrum. By
the Halmos–von Neumann representation result (Theorem 6.2.6) we may assume
that (X, T ) is induced by a rotation map la : G→ G, x 7→ ax on a compact abelian
group G for some a ∈ G. As an easy consequence of Proposition 6.1.8 the function

g : G→ C, x 7→
∫
G

f · (f ◦ lx) · (f ◦ lx2) dmG

is continuous. Notice further that g(an) =
∫
G
f · Un

T f · U2n
T f dmG for every n ∈ Z.

In particular, g(1) =
∫
G
f 3 dmG > 0 since f ≥ 0,

∫
X
fdµX > 0, and this implies∫

G
g dmG > 0, see Remark 6.1.4. Using unique ergodicity of the rotation system

(see Proposition 6.2.4) we obtain by Proposition 7.2.2 that

lim
N→∞

1

N

N−1∑
n=0

∫
G

f · Un
T f · U2n

T f dmG = lim
N→∞

1

N

N−1∑
n=0

Un
τag(1) =

∫
G

gmG > 0.

For a general ergodic system (X,T ) consider the Kronecker subsystem (Xkro, Tkro)
from Definition 7.1.14. Since UJkro(fix(UTkro)) ⊆ fix(UT ) we obtain that (Xkro, Tkro)
is also ergodic. We use the conditional expectation g := E(f | Xkro) ∈ L∞(Xkro) of
f with respect to this subsystem. By Lemma 8.1.1 (ii) and (v) we have g > 0, and
h := f − UJkrog ∈ L2(X)wm ∩ L∞(X) by Lemma 8.1.1 (iii) and (iv). We obtain

1

N

N−1∑
n=0

Un
T f · U2n

T f − 1

N

N−1∑
n=0

Un
TUJkrog · U2n

T UJkrog

=
1

N

N−1∑
n=0

Un
Th · U2n

T h− 1

N

N−1∑
n=0

Un
TUJkrog · U2n

T h− 1

N

N−1∑
n=0

Un
Th · U2n

T UJkrog

and the right hand side of this equation converges to zero in L2(X) by Lemma 8.2.4.
This implies that the sequence ( 1

N

∑N−1
n=0

∫
X
f ·Un

T f ·U2n
T f)N∈N converges if and only

if the sequence ( 1
N

∑N−1
n=0

∫
X
f ·Un

TUJkrog ·U2n
T UJkrog)N∈N converges, and in that case

1One can also use Exercise 7.1 to treat the second case exactly like the first one.
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both limits agree. By Lemma 8.1.1 (iv) and (v) we have∫
X

f · Un
TUJkrog · U2n

T UJkrog =

∫
Xkro

E(f · Un
TUJkrog · U2n

T UJkrog | Xkro)

=

∫
Xkro

E(f · UJkro(Un
Tkro

g · U2n
Tkro

g) | Xkro)

=

∫
Xkro

g · Un
Tkro

g · U2n
Tkro

g

for every n ∈ N. Thus,

lim
N→∞

1

N

N−1∑
n=0

∫
X

f · Un
T f · U2n

T f = lim
N→∞

1

N

N−1∑
n=0

∫
Xkro

g · Un
Tkro

g · U2n
Tkro

g > 0

by the first part.

8.3 The relative perspective
In the previous section, we proved Furstenberg’s multiple recurrence theorem in
the double recurrence situation f · Un

T f · U2n
T f (see Theorem 8.2.2). The case of

single recurrence corresponds to von Neumann’s mean ergodic theorem (see Theorem
3.1.1). In both situations - single and double recurrence - we observed that the proofs
relied on a decomposition result. In the single recurrence case, we decomposed L2(X)
into the fixed space fix(UT ) and its orthogonal complement (see Theorem 3.2.7).
In the double recurrence situation, we decomposed L2(X) into the structured part
L2(X)ds and its orthogonal complement, which we identified with the weakly mixing
part L2(X)wm (the JdLG-decomposition; see Theorem 5.3.4).

To prove Furstenberg’s multiple recurrence theorem in full generality (Theorem
4.2.10), we will establish a relative version of the JdLG-decomposition. We mo-
tivate this relative version with the following example of a skew-product extension
(cf. Example 7.2.6).

We consider an ergodic skew-rotation on the 2-torus T2 equipped with the Haar
measure, given by the homeomorphism

T2 → T2, (x, y) 7→ (ax, xy),

where a is irrational. The JdLG-decomposition of this measure-preserving system
identifies the rotational system (T, τa) as its discrete spectrum part via the projection
onto the first coordinate (this will be one part of an exercise in the next lecture).
The remaining “structure” of this system can only be understood relative to its
discrete spectrum part (T, τa) (this will be the other part of an exercise in the next
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lecture). Indeed, relatively, the remaining part resembles a bundle of rotational
systems x→ (y 7→ xy) where the rotation depends on the point x in the base system.
Thus, relative to this base, we can hope to decompose the unitary representation of
the system into an invariant bundle of 1-dimensional subspaces. The theory we will
develop in the following lectures, known as Furstenberg–Zimmer structure theory,
makes the previous heuristic rigorous. This theory will be crucial for establishing
Furstenberg’s recurrence theorem and, via Furstenberg’s correspondence principle,
Szemerédi’s theorem in full generality.

To study the relative structure in a system, such as a relative version of the JdLG-
decomposition theorem, it is necessary to develop tools for relative analysis. In our
context, “relative” always means relativizing with respect to a subsystem (Y, S) of
a system (X,T ). Concretely, this relativization is achieved by conditioning on the
subsystem (Y, S) using the conditional expectation operator. Therefore, we will
start by developing the tools necessary for relative analysis before delving into the
Furstenberg–Zimmer structure theory in the subsequent lectures.

8.4 Disintegration of measures and relative prod-
ucts

The disintegration of measures is the idea that, given a measure-preserving trans-
formation X → Y between probability spaces X and Y , the measure µX can be
expressed as a bundle of measures µy parameterized over the base space Y . Disinte-
gration of measures will be a key tool for introducing relative products of measure-
preserving systems, which are, in turn, essential for establishing a relative version
of the JdLG-decomposition.

An example of disintegration of measures occurs in the construction of the 2-
dimensional Lebesgue measure λR2 : For a Borel set A ⊆ R2,

λR2(A) =

∫
R
λR(Ay) dλR(y),

where
Ay = {x ∈ R : (x, y) ∈ A}

is the vertical slice of A at y and λR is the 1-dimensional Lebesgue measure on the
real line.

The classical theory of disintegration, which we will introduce shortly, applies to
Lebesgue probability spaces. For alternative approaches that work for general prob-
ability spaces, see the Comments and Further Reading section of this lecture.

To prove the disintegration of measure theorem for Lebesgue spaces, we will first
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establish that such spaces are isomorphic to probability spaces formed on compact
metric spaces. We begin with the following lemma.

Lemma 8.4.1. The measure algebra Σ(X) of a Lebesgue space X is countably gen-
erated; that is, there exists a countable algebra D of Σ(X) such that any element
of Σ(X) can be written as a countable combination of unions and intersections of
elements in D.

Proof. Recall that a probability space (X,ΣX , µX) is a Lebesgue space if there
exists a complete separable metric space Y equipped with the Borel σ-algebra
ΣY = B(Y ) and a Borel probability measure µY , such that there is an invertible
map φ ∈ M(X, Y ) in the sense of Definition 1.1.5. In particular, the pullback map
φ∗ : Σ(Y ) → Σ(X) is an isomorphism of measure algebras. Therefore, it suffices to
show that Σ(Y ) is countably generated.

Since the space Y is separable, its topology has a countable basis {Un}∞n=1. Con-
sider the algebra D generated by finite Boolean combinations of the Un; that is, D
consists of all sets that can be formed using a finite number of unions, intersections,
and complements of the Un. Since the Un are countable, the collection D is also
countable. The Borel σ-algebra B(Y ) is generated by the open sets, so we have
B(Y ) = σ(D).
We equip Σ(Y ) with the metric d(A,B) = µY (A△B) (see Exercise 1.4). By Lemma
2.1.12, for any measurable set A ∈ B(Y ) and any ε > 0, there exists a set D ∈ D
such that µY (A△D) < ε. Thus, the equivalence classes of elements of D are dense
in Σ(Y ) with respect to the metric d.

Given any A ∈ Σ(Y ), there are Dn ∈ D such that d(Dn, A) ≤ 2−n. Let

B =
⋂
N∈N

⋃
n≥N

Dn.

We get

µY (B ∩ Ac) = µY

(⋂
N∈N

⋃
n≥N

(Dn ∩ Ac)

)
≤ lim

N→∞

∑
n≥N

µY (Dn ∩ Ac) ≤ lim
N→∞

21−N = 0,

and

µY (B
c ∩ A) = µY

(⋃
N∈N

⋂
n≥N

(Dc
n ∩ A)

)
≤ lim inf

n→∞
µY (D

c
n ∩ A) = 0.

Then d(A,B) = 0, which completes the proof.

Proposition 8.4.2. Let X be a Lebesgue space. Then there exists a compact metric
space K equipped with the Borel σ-algebra B(K) and a regular Borel probability
measure µK such that (X,ΣX , µX) and (K,B(K), µK) are isomorphic in the sense
of Definition 1.1.5.
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Proof. By Lemma 8.4.1, Σ(X) is countably generated, and let D be a countable
dense algebra. LetD0 = {A1, A2, . . .} be a subset of ΣX consisting of a representative
for each element in D. We consider the compact metric space K = {0, 1}N, and for
every m ∈ N, consider the (open and closed) cylinder set

A′
m = {(xn)n∈N ∈ K : xm = 1}.

For every N ∈ N, let AN be the algebra of sets on {0, 1}N generated by the A′
m with

m ≤ N . This corresponds to the power set and the product σ-algebra on {0, 1}N .

Define a measure µN on {0, 1}N by

µN(A
′
i1
∩ . . . ∩ A′

ik
) := µX(Ai1 ∩ . . . ∩ Aik), (8.2)

for any choice of i1 < . . . < ik ≤ N .

Extend µN arbitrarily to {0, 1}N equipped with the Borel σ-algebra B(K) after
embedding {0, 1}N into {0, 1}N by sending (xn)1≤n≤N to (yn)n∈N where xn = yn
for 1 ≤ n ≤ N and yn = 0 for n > N . By a theorem of Ulam (see, e.g., [Dud02,
Theorem 7.1.3]), every Borel probability measure on a compact metric space is inner
regular, and therefore also outer regular. Let µK be a weak* accumulation point
of the sequence (µN)N∈N of regular Borel probability measures. The measure µK
satisfies (8.2) for any choice of i1 < . . . < ik.

We can extend the map T (An) = A′
n to a measure algebra isomorphism from Σ(X)

to Σ(K) using Lemma 2.1.12, as the algebras generated by the An and A′
n in Σ(X)

and Σ(K), respectively, are dense with respect to the metrics associated with µX
and µK , and T is an isometry.

Standing assumptions: For the remainder of this lecture series, unless men-
tioned otherwise, we assume that all probability spaces are formed on compact
metric spaces equipped with regular probability measures, and we consider invert-
ible measure-preserving transformations between them in the sense of Definition
1.1.5. We further assume that Γ is a countable discrete abelian group (cf. Remark
2.1.4). Then, without loss of generality, we can assume that all measure-preserving
systems are concrete systems in the sense of Definition 2.1.3. Following Exercise 2.6
and Proposition 8.4.2, we can always reduce to such a setup if we work with measure-
preserving systems in the sense of Definition 2.1.1 formed on Lebesgue probability
spaces. We point out that these assumptions are not necessary for developing ergodic
structure theory (see the Comments and Further Reading section of this lecture for
a discussion). However, we state these assumptions to reduce the amount of back-
ground and technology needed and to keep the lectures as self-contained as possible.
These assumptions are satisfied in all of the applications.

Recall that P(K) denotes the space of regular Borel probability measures on a
compact space K. By Proposition 4.1.2, P(K) is a compact space when identified
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with a subset of the dual space C(K)′, equipped with the weak* topology. Moreover,
if K is metrizable, the Banach space C(K) is separable (see, e.g., [AB06, Lemma
3.99]), and therefore the topology on P(K) is metrizable (see, e.g., [AB06, Theorem
6.30]).

With these preliminaries in place, we can state the following useful result on the
disintegration of measures, where we consider the Borel σ-algebra on P(X).

Theorem 8.4.3. Let τ : X → Y be a measure-preserving transformation between
probability spaces X, Y . Then there exists a measurable map y 7→ µy from Y to
P(X), called the disintegration of µX over Y , with the following properties:

(i) For every f ∈ L2(X,ΣX , µX), we have f ∈ L2(X,ΣX , µy), and

E(f | Y )(y) =

∫
X

f dµy for almost every y ∈ Y.

(ii) For every f ∈ L2(X,ΣX , µX),∫
Y

(∫
X

f dµy

)
dµY =

∫
X

f dµX .

(iii) If there is another measurable map y 7→ µ′
y satisfying properties (i) and (ii),

then µy = µ′
y for almost every y ∈ Y .

Proof. Write Q := Q + iQ ⊆ C. Using separability, we choose a countable dense
subset E ⊆ C(X) and denote by EQ the Q-linear hull of E. For every f ∈ EQ, pick
a representative of E(f | Y ) in L2(Y ). For almost every y, by the countability of
EQ, the map

φy(f) := E(f | Y )(y)

is a well-defined positive, unital, continuous, and Q-linear functional on EQ. Using
continuity with respect to the sup-norm, we can extend φy to a positive, unital,
continuous, and C-linear functional on C(X) for almost every y.

By Theorem 3.2.6, we can represent φy by a measure µy for almost every y. Note
that a subbasis of open sets for the weak* topology on P(X) is formed by sets of
the form

{φ ∈ P(X) : φ(f) > 0},
as f ranges over C(X). Since {y ∈ Y : φy(f) > 0} is measurable in Y for f ∈ EQ,
it follows that {y ∈ Y : φy(f) > 0} is measurable in Y for every f ∈ C(X). Thus,
by Proposition 1.1.4(i), the map y 7→ µy is measurable.

The extension to L2 in (i) follows from Lemma 4.1.7 and Lemma 8.1.1(ix) via a
standard approximation procedure. Property (ii) is immediate from Lemma 8.1.1(v).
The uniqueness property (iii) follows from uniqueness in Theorem 3.2.6.
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As a corollary, we obtain the following variant of Proposition 8.1.2.

Corollary 8.4.4. Let q : (X, τ) → (Y, σ) be a factor map of concrete measure-
preserving systems (X, τ), (Y, σ), and let y 7→ µy be the disintegration of µX over Y .
Then for all γ ∈ Γ and almost every y ∈ Y ,

µσγy = (τγ)∗µy.

Proof. The claim follows from Proposition 8.1.2.

We can now introduce an important construction:

Definition 8.4.5. Let τi : Xi → Y , for i = 1, 2, be measure-preserving transforma-
tions of probability spaces. Denote by y 7→ µ1,y, y 7→ µ2,y the disintegration of the
measures µX1 , µX2 over Y . Using the monotone convergence theorem, we can define
a measure µX1 ⊗Y µX2 on the product measurable space (X1 ×X2,ΣX1 ⊗ ΣX2) by

µX1 ⊗Y µX2(A) =

∫
Y

µ1,y ⊗ µ2,y(A) dµY , (8.3)

for A ∈ ΣX1 ⊗ ΣX2 . We call the resulting probability space (X1 × X2,ΣX1 ⊗
ΣX2 , µX1 ⊗Y µX2) the product of X1 and X2 relative to Y , and denote it by
X1 ⊗Y X2.

Proposition 8.4.6. The measure µX1⊗Y µX2 is uniquely characterized by the equal-
ity ∫

X1×X2

f1 ⊙ f2 d(µX1 ⊗Y µX2) =

∫
Y

E(f1 | Y )E(f2 | Y ) dµY

for all f1 ∈ L∞(X1) and f2 ∈ L∞(X2).

Proof. This is immediate for f1 and f2 being characteristic functions of measurable
sets. The general case follows from a standard approximation procedure using the
properties of the conditional expectation in Lemma 8.1.1.

We obtain the following construction of relative products of measure-preserving
systems:

Corollary 8.4.7. Let qi : (Xi, τi) → (Y, σ), for i = 1, 2, be factor maps of concrete
measure-preserving systems. Define for every γ ∈ Γ, the map

τγ = τ1,γ × τ2,γ. (8.4)

Then (X1 ⊗Y X2, τ) is a concrete measure-preserving system.
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Moreover, the coordinate projections πi : X1 × X2 → Xi for i = 1, 2 define factor
maps of concrete measure-preserving systems, making the following diagram com-
mute:

(X1 ⊗Y X2, τ)

(X1, τ1) (X2, τ2)

(Y, σ)

π1 π2

q1 q2

Proof. Let Ai ∈ ΣXi
and denote by fi = 1Ai

for i = 1, 2. By Propositions 8.4.6 and
8.1.2,∫

f1 ⊙ f2 ◦ (τ1,γ × τ2,γ) d(µX1 ⊗Y µX2) =

∫
(f1 ◦ τ1,γ)⊙ (f2 ◦ τ2,γ) d(µX1 ⊗Y µX2)

=

∫
Y

E(f1 ◦ τ1,γ | Y )⊙ E(f2 ◦ τ2,γ | Y ) dµY

=

∫
Y

E(f1 | Y ) ◦ σγ ⊙ E(f2 | Y ) ◦ σγ dµY

=

∫
Y

E(f1 | Y )⊙ E(f2 | Y ) dµY

=

∫
f1 ⊙ f2 d(µX1 ⊗Y µX2).

By linearity, this computation extends to the algebra of finite disjoint unions of
product sets A1 × A2 with Ai ∈ ΣXi

. Finally, using Lemma 2.1.12, we obtain the
first claim. The remaining claim follows by a similar line of reasoning, which we
leave to the interested reader.
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8.5 Supplement: The van der Corput Inequality

We now give an elementary proof of Lemma 8.2.3 based Joel Moreira’s blog2. A
more structural proof based on the mean ergodic theorem (even providing a slightly
sharper estimate) can be found in [EKN21]3 We start with the following observa-
tion.

Lemma 8.5.1. Let (bm)m∈N0 be a bounded sequence in R. Then

lim sup
M→∞

2

M2

M−1∑
m1=0

M−m1−1∑
m=0

bm ≤ lim sup
M→∞

1

M

M−1∑
m=0

bm.

Proof. Denote the right side by c. For ε > 0 choose M0 ∈ N such that 1
M

∑M−1
m=0 bm ≤

c + ε for every M ≥ M0. Since lim supM→∞
2
M2

∑M−1
m1=M−M0

∑M−m1−1
m=0 bm = 0, it

suffices to check that

lim sup
M→∞

2

M2

M−M0−1∑
m1=0

M−m1−1∑
m=0

bm ≤ lim sup
M→∞

1

M

M−1∑
m=0

bm.

But for M ∈ N with M ≥ M0 we have 1
M

∑M−m1−1
m=0 bm ≤ M−m1

M
(c + ε) for each

m1 ∈ {0, . . . ,M −M0 − 1}, hence

2

M2

M−M0−1∑
m1=0

M−m1−1∑
m=0

bm ≤ (c+ ε)
2

M2

M−M0−1∑
m1=0

(M −m1)

= (c+ ε) · (M −M0 − 1)(M +M0)

M2
.

Taking the limit superior yields the claim.

Let us now recall the statement of Lemma 8.2.3 and then prove it.

Lemma (van der Corput). For every bounded sequence (an)n∈N0 in a Hilbert space
H the inequality

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

an

∥∥∥∥∥
2

≤ lim sup
M→∞

1

M

M−1∑
m=0

lim sup
N→∞

1

N

N−1∑
n=0

Re (an|an+m)

holds.
2https://joelmoreira.wordpress.com/2012/04/24/proof-of-roths-theorem-using-ergodic-theory/
3See also https://joelmoreira.wordpress.com/2015/04/12/alternative-proofs-of-two-classical-lemmas/

https://joelmoreira.wordpress.com/2012/04/24/proof-of-roths-theorem-using-ergodic-theory/
https://joelmoreira.wordpress.com/2015/04/12/alternative-proofs-of-two-classical-lemmas/
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Proof. Note first that by a telescopic sum argument we have limN→∞
1
N

∑N−1
n=0 (an−

an+m) = 0 for every m ∈M , hence also

lim
N→∞

1

N

N−1∑
n=0

an −
1

N

N−1∑
n=0

1

M

M−1∑
m=0

an+m = 0 (8.5)

for every M ∈M . We obtain by the Cauchy–Schwarz inequality that∥∥∥∥ 1

N

N−1∑
n=0

1

M

M−1∑
m=0

an+m

∥∥∥∥2 ≤ 1

N

N−1∑
n=0

∥∥∥∥ 1

M

M−1∑
m=0

an+m

∥∥∥∥2 = 1

N

N−1∑
n=0

1

M2

M−1∑
m1,m2=0

cn+m1,n+m2

for all N,M ∈ N, where ck,l := Re (ak|al) for k, l ∈ N0. For n ∈ N0 and M ∈ N we
write the sum

∑M−1
m1,m2=0 cn+m1,n+m2 as

M−1∑
m=0

cn+m,n+m +
M−1∑
m1=0

M−1∑
m2=m1+1

cn+m1,n+m2 +
M−1∑
m2=0

M−1∑
m1=m2+1

cn+m1,n+m2 .

Since ck,l = cl,k and cl,l ≥ 0 for l, k ∈ N0 taking the real part on both sides yields
M−1∑

m1,m2=0

cn+m1,n+m2 =
M−1∑
m=0

cn+m,n+m + 2Re

(M−1∑
m1=0

M−1∑
m2=m1+1

cn+m1,n+m2

)

≤ 2Re
M−1∑
m1=0

M−1∑
m2=m1+1

cn+m1,n+m2 .

We conclude that∥∥∥∥ 1

N

N−1∑
n=0

1

M

M−1∑
m=0

an+m

∥∥∥∥2 ≤ 2

M2

M−1∑
m1=0

M−1∑
m2=m1

1

N

N−1+m2∑
n=m2

cn,n+m2−m1

=
2

M2

M−1∑
m1=0

M−m1−1∑
m=0

1

N

N−1+m+m1∑
n=m+m1

cn,n+m

for all N,M ∈ N. Again using telescopic summing we have

lim
N→∞

(
1

N

N−1+m+m1∑
n=m+m1

cn,n+m2−m1 −
1

N

N−1∑
n=0

cn,n+m2−m1

)
= 0

for all m,m1 ∈ N0. Combined with (8.5) we obtain for all M ∈ N that

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

an

∥∥∥∥∥
2

≤ 2

M2

M−1∑
m1=0

M−m1−1∑
m=0

lim sup
N→∞

1

N

N−1∑
n=0

cn,n+m

Finally, we apply Lemma 8.5.1 with bm := lim supN→∞
1
N

∑N−1
n=0 cn,n+m for m ∈ N0

to obtain the claim.
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8.6 Comments and Further Reading
Theorem 8.2.1 was proved using Fourier-analytic methods in 1953 by Klaus Roth
[Rot53], confirming a conjecture of Paul Erdős and Pál Turán from 1936 (see [ET36]).
Our proof combines the reduction to the Kronecker subsystem via the van der Corput
lemma (see, e.g., [EW11, Section 7.6] or [EFHN15, Section 20.4]) with an argument
of Furstenberg (see [Fur77, Paragraph 3]).

We point out that today there are many different proofs of Roth’s theorem, includ-
ing different ergodic theoretic ones. For example, Furstenberg uses a more involved
structural argument instead of the van der Corput lemma to pass to the Kronecker
subsystem. On the other hand, one can use Exercise 6.6 to treat the discrete spec-
trum case without using the Halmos–von Neumann representation theorem (see
again [EW11, Section 7.6] and [EFHN15, Section 20.4]).

The compact metric space with a regular Borel probability measure that we as-
sociated with the measure algebra of a Lebesgue probability space in Proposition
8.4.2 is an example of a topological model of a probability space, called the Cantor
model. There are many topological models of probability spaces designed for differ-
ent purposes (see, e.g., the Koopman model in [JST24, Appendix A.4], and for a
thorough discussion [JT23a] and [EFHN15, Chapter 12]). The canonical model, as
termed in [JT23a] (see therein for alternative names), represents the measure alge-
bra of an arbitrary probability space on a, in general, inseparable compact Hausdorff
space.

Using such strong topological models, it is possible to prove a version of the disinte-
gration theorem (Theorem 8.4.3) for arbitrary probability spaces, and consequently,
also to define relative products (see [JT23a, Section 8]). Surprisingly, such canonical
disintegrations, as termed in [JT23a], do not yield a canonical ergodic decomposition
(cf. Exercise 8.5); a counterexample was constructed in [JT23a, Appendix B].

However, one can still use the canonical disintegration, among other tools, to es-
tablish a Furstenberg–Zimmer structure theory for arbitrary (not necessarily count-
able) group actions on the measure algebra of arbitrary (not necessarily countably
generated) probability spaces. We will comment more on this in the following lec-
tures.
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8.7 Exercises
Exercise 8.1. Use Lemma 8.2.3 to show van der Corput’s difference theorem: If
(an)n∈N is a sequence in T such that (an+man)n∈N is equidistributed for every m ∈ N,
then (an)n∈N is equidistributed.

Exercise 8.2. Let (X,T ) be a weakly mixing measure-preserving system over Γ =
Z. Show that for all f1, . . . , fk ∈ L∞(X) we have

lim
N→∞

1

N

N−1∑
n=0

Un
T f1 · · ·Ukn

T fk =

(∫
X

f1 · · ·
∫
X

fk

)
· 1

in L2(X).
Hint: Use an induction on k and apply the van der Corput Lemma 8.2.3.

Exercise 8.3. Let (X,T ) be a measure-preserving system with discrete spectrum
over Γ = Z. Show that for all f1, . . . , fk ∈ L∞(X) the limit

lim
N→∞

1

N

N−1∑
n=0

Un
T f1 · · ·Ukn

T fk

exists in L2(X).
Hint: First consider eigenfunctions f1, . . . , fk ∈ L∞(X).

Exercise 8.4. The Furstenberg–Sárközy theorem states that for every subset A ⊆ N
with upper density d(A) > 0 there are a, d ∈ N with a, a+d2 ∈ A. In this exercise we
prove a known generalization of this result. In the following U ∈ U (H) is a unitary
operator on a Hilbert space H and p ∈ Z[t] a polynomial with integer coefficients.

(i) Show that

lim
N→∞

1

N

N−1∑
n=0

Up(n)f =
1

m

m−1∑
n=0

Up(n)f

for every f ∈ fix(Um) where m ∈ N.

(ii) Define the rational spectrum part by

Hrs := lin
⋃
k∈N

⋃
a∈T
ak=1

ker(a− U) ⊆ Hds.

Show that the limit limN→∞
1
N

∑N−1
n=0 U

p(n)f exists for every f ∈ Hrs.
Hint: Observe that the inclusion Hrs ⊆

⋃
m∈N fix(U

m) holds4

4In fact, this is even an equality, see, e.g., [EF19, Section 6.2].



8.7. EXERCISES 131

(iii) Show that if p ∈ Z[t] is non-constant, then limN→∞
1
N

∑N−1
n=0 U

p(n)f = 0 for
every f ∈ Hds ∩H⊥

rs .
Hint: Use Theorem 7.3.2.

(iv) Show that if p ∈ Z[t] is non-constant, then limN→∞
1
N

∑N−1
n=0 U

p(n)f = 0 for
every f ∈ Hwm.
Hint: Use an induction on the degree of p and Lemma 8.2.3.

(v) Show that the limit limN→∞
1
N

∑N−1
n=0 U

p(n)f exists for every f ∈ H.

(vi) Show that for every measure-preserving system (X,T ) over Z the rational
spectrum part L2(X)rs is an invariant Markov sublattice of L2(X).

(vii) Show that for every polynomial p ∈ Z[t] with p(0) = 0, every measure-
preserving system (X,T ) over Z and every f ∈ L∞(X) with f ≥ 0,

∫
X
fdµX >

0 the limit

lim
N→∞

1

N

N−1∑
n=0

∫
X

f · Up(n)
T f

exists and is strictly positive.
Hint: Argue as in the proof of Theorem 8.2.2 to reduce to the case L2(X) =
L2(X)rs. We may further assume that ∥f∥2 = 1. Writing Pm for the orthogonal
projection onto fix(Um

T ), we find some m ∈ N with ∥f − Pmf∥2 ≤ 1
4
(
∫
X
f)2.

Use the Cauchy–Schwarz inequality as well as the facts Pmf ≥ 0 and
∫
X
f =∫

X
Pmf to check that

∫
X
f · Up(mn)

T f ≥ 1
2
(
∫
X
f)2 for all n ∈ N.

(viii) For every polynomial p ∈ Z[t] with p(0) = 0 and every subset A ⊆ N with
d(A) > 0 there are a, d ∈ Z with a, a+ p(d) ∈ A.

Exercise 8.5. Let (X, τ) be a concrete measure-preserving system. Let Y = X,
let ΣY be the σ-algebra of almost invariant subsets of ΣX , let µY = µX , and let
σ : Γ → Aut(Y ) be the trivial homomorphism. Consider the disintegration y 7→ µy
of µX over Y .

Prove that for almost every y ∈ Y , the measure-preserving system on X associated
with the action τ and the measure µy is ergodic. While doing so, verify all the
unproved claims in the statement of this exercise.
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Lecture 9

In this lecture, we introduce compact extensions and weakly mixing extensions, and
establish their dichotomy. From this, we infer the foundational Furstenberg–Zimmer
structure theorem. We begin by developing a conditional version of Hilbert space
theory to perform the relative analysis required for the proofs of these results.

9.1 The Furstenberg–Zimmer Structure Theorem
We emphasize that equalities and inequalities between measurable functions will al-
ways be understood in the almost sure sense, unless explicitly mentioned otherwise.
Additionally, we will freely pass from the underlying probability spaces to their mea-
sure algebras and work with representatives if needed, without explicitly mentioning
it. In our countable setting, these passages are all well-defined and safe; however,
we encourage the interested reader to verify for themselves that the arguments are
sound and the notations are well-defined.

Throughout this section, let q : (X, τ)→ (Y, σ) be a factor map of concrete measure-
preserving systems, and let Uq : L2(Y ) → L2(X) be the associated Markov embed-
ding. Let y 7→ µy denote the disintegration of µX relative to Y .

Recall from Section 8.4 that we denote by (X ⊗Y X, τ × τ) the product system
of (X, τ) with itself relative to its subsystem (Y, σ). We can now use the first
coordinate projection π1 : X × X → X (alternatively, we could use the second
coordinate projection π2) to define the factor map

p : (X ⊗Y X, τ × τ)→ (Y, σ)

(cf. the commutative diagram 8.4.7), and let Up : L2(Y ) → L2(X ⊗Y X) be the
associated Markov embedding.

The key idea for studying extensions q : (X, τ) → (Y, σ) is to replace the classical
analysis with “relative analysis” over Y . For example, instead of vector spaces, we are
now interested in “vector spaces” over the algebra L∞(Y ). Since L∞(Y ) is generally

133
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not a field, the right concept is that of a module. Recall that an R-module M over
a commutative unital ring R consists of an abelian group (M,+) and an operation
· : R ×M → M such that for all r, s ∈ R and x, y ∈ M , the following properties
hold:

r · (x+ y) = r · x+ r · y,
(r + s) · x = r · x+ s · x,
(rs) · x = r · (s · x),
1 · x = x.

For h ∈ L∞(Y ) and f ∈ L2(X), we have Uq(h)f ∈ L2(X). This equips L2(X)
with the structure of an L∞(Y )-module. Similarly, for f ∈ L2(X ⊗Y X), we have
Up(h)f ∈ L2(X⊗Y X), and this equips L2(X⊗Y X) with the structure of an L∞(Y )-
module as well.

Definition 9.1.1. Let f, g ∈ L2(X). We define the conditional inner product
of f and g by

(f | g)X|Y := E(fḡ | Y ),

and the conditional norm of f by

∥f∥X|Y :=
√

(f | f)X|Y .

Moreover, we say that f, g are conditionally orthogonal if (f | g)X|Y = 0.

For f, g ∈ L2(X), the conditional inner product is only an element of L1(Y ). To
obtain an L∞(Y )-valued inner product, we introduce the following definition.

Definition 9.1.2. We define the conditional L2-space

L2(X | Y ) := {f ∈ L2(X) : ∥∥f∥X|Y ∥L∞(Y ) <∞},

and equip it with the norm

∥f∥L2(X|Y ) := ∥∥f∥X|Y ∥L∞(Y ).

Note that we have the inclusions

L∞(X) ⊆ L2(X | Y ) ⊆ L2(X).

Remark 9.1.3. Similarly, we define the conditional inner product (· | ·)X⊗YX|Y , the
conditional norm ∥·∥X⊗YX|Y , and the conditional L2-tensor space L2(X⊗YX | Y )
with norm ∥ · ∥L2(X⊗YX|Y ).
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The next proposition explains why we call L2(X | Y ) a conditional Hilbert space
(similar properties also hold for L2(X ⊗Y X | Y )).

Proposition 9.1.4. The following properties are satisfied.

(i) If f, g ∈ L2(X | Y ), then (f | g)X|Y ∈ L∞(Y ) and consequently also ∥f∥X|Y ∈
L∞(Y ).

(ii) L2(X | Y ) is an L∞(Y )-module and a Banach space with respect to the norm
∥ · ∥L2(X|Y ).

(iii) If f, g ∈ L2(X | Y ) and h ∈ L∞(Y ), then

(Uq(h)f | g)X|Y = h(f | g)X|Y = (f | Uq(h̄)g)X|Y .

(iv) If f, g ∈ L2(X | Y ), the conditional Cauchy–Schwarz inequality holds:

|(f | g)X|Y | ≤ ∥f∥X|Y ∥g∥X|Y .

(v) If f, g ∈ L2(X | Y ), the conditional triangle inequality holds:

∥f + g∥X|Y ≤ ∥f∥X|Y + ∥g∥X|Y .

(vi) If f, g ∈ L2(X | Y ), the conditional Pythagorean identity holds:

∥f − g∥2X|Y = ∥f∥2X|Y − 2Re(f | g)X|Y + ∥g∥2X|Y .

Proof. Exercise.

In Exercise 6.6, we described systems with discrete spectrum in terms of precompact
orbits. The following notion of conditional precompactness in the conditional Hilbert
space L2(X | Y ), and for extensions of measure-preserving systems, is a relative
version of this concept.

Definition 9.1.5. (i) A subset Z ⊆ L2(X | Y ) is said to be conditionally
precompact if for every ε > 0, there exist finitely many g1, . . . , gn ∈ L2(X |
Y ) such that

inf
1≤i≤n

∥f − gi∥X|Y ≤ ε1.

for each f ∈ Z.

(ii) An element f ∈ L2(X | Y ) is said to be conditionally almost periodic if
its orbit

{Uτγ (f) : γ ∈ Γ} ⊆ L2(X | Y )

is conditionally precompact.
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(iii) The extension q : (X, τ)→ (Y, σ) is said to be compact if the set

{f ∈ L2(X | Y ) : f conditionally almost periodic}

is dense in L2(X).

Some important examples related to the notion of conditionally almost periodicity
are discussed in the exercises to this lecture.

We show that the collection of functions that are conditionally almost periodic forms
a subsystem lying between (X, τ) and (Y, σ):

Proposition 9.1.6. There exists a concrete measure-preserving system (Z, ρ) with
the following properties.

(i) (Z, ρ) is a subsystem of (X, τ) and a compact extension of (Y, σ).

(ii) If (Z ′, ρ′) is another concrete measure-preserving system satisfying both prop-
erties in (i), then (Z ′, ρ′) is a subsystem of (Z, ρ).

We call (Z, ρ) the maximal compact extension of (Y, σ) below (X, τ).

Proof. Exercise.

The following definition of weakly mixing extensions is motivated by the characteri-
zation of weak mixing in Proposition 7.1.3. Observe that countable discrete abelian
groups admit Følner sequences since the set of finite subsets of a countable set is
countable, as used in the proof of Proposition 3.1.10 to construct Følner nets.

Definition 9.1.7. Let (Fn) be a Følner sequence for Γ. A function f ∈ L2(X | Y )
is said to be conditionally weakly mixing if for every g ∈ L2(X | Y ), we have

lim
n→∞

1

|Fn|
∑
γ∈Fn

∥(Uτγ (f) | g)X|Y ∥2L2(Y ) = lim
n→∞

1

|Fn|
∑
γ∈Fn

∥(f | Uτγ (g))X|Y ∥2L2(Y ) = 0.

(9.1)
The extension q : (X, τ) → (Y, σ) is called weakly mixing if every f ∈ L2(X | Y )
with E(f | Y ) = 0 is conditionally weakly mixing.

Remark 9.1.8. From the identity

∥(Uτγ (f) | g)X|Y ∥2L2(Y ) =

∫
Y

(Uτγ (f) | g)X|Y (g | Uτγ (f))X|Y dµY

= (Uτγ (f ⊙ f̄) | g ⊙ ḡ)L2(X⊗YX),

we can rewrite the expression in (9.1) in terms of ergodic averages:

1

|Fn|
∑
γ∈Fn

(Uτγ (f ⊙ f̄) | g ⊙ ḡ)L2(X⊗YX).
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From the abstract ergodic theorem (cf. Theorem 3.1.5), these averages converge to

(Pfix(Uτ×τ )(f ⊙ f̄)|g ⊙ g).

This readily implies that (9.1) is equivalent to Pfix(Uτ×τ )(f ⊙ f̄) = 0. In particular,
Definition 9.1.7 is independent of the choice of the Følner sequence for Γ.

The aim of this section is to establish the following relative version of the dichotomy
between compactness and weak mixing (cf. Theorem 7.1.16).

Theorem 9.1.9. Let q : (X, τ) → (Y, σ) be an extension of concrete measure-
preserving systems. Then exactly one of the following statements is true:

(i) There exists a concrete measure-preserving system (Z, ρ) such that the follow-
ing diagram commutes:

(X, τ) (Z, ρ) (Y, σ)

q1

q

q2

where q1 and q2 are extensions, with q2 being a compact extension, which is
not an isomorphism.

(ii) q is a weakly mixing extension.

In order to prove Theorem 9.1.9, we will establish first:

Proposition 9.1.10. Let q : (X, τ) → (Y, σ) be an extension of concrete measure-
preserving systems. A function f ∈ L2(X | Y ) is conditionally weakly mixing if and
only if (f | g)X|Y = 0 for all conditionally almost periodic functions g ∈ L2(X | Y ).

We show how Proposition 9.1.10 implies Theorem 9.1.9.

Proof of Theorem 9.1.9. First, observe that Proposition 9.1.10 implies, in particular,
that the properties (i) and (ii) in Theorem 9.1.9 cannot occur simultaneously.

Now, if q is not a weakly mixing extension, there exists f ∈ L2(X | Y ) with E(f |
Y ) = 0 that is not conditionally weakly mixing. By Proposition 9.1.10, there exists
a conditionally almost periodic function g ∈ L2(X | Y ) such that (f | g)X|Y ̸= 0.

By assumption, f is orthogonal to Uq(L
∞(Y )), and thus g is not an element of

Uq(L
∞(Y )). By Proposition 9.1.6, the maximal compact extension of (Y, σ) is not

trivial.

We split the proof of Proposition 9.1.10. We first prove the easier “only if” part:

Proof. Let f ∈ L2(X | Y ) be conditionally weakly mixing and g ∈ L2(X | Y ) be
conditionally almost periodic. Let (Fn) be a Følner sequence for Γ and let ε > 0 be
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arbitrary. Since g is conditionally almost periodic, there are f1, . . . , fn ∈ L2(X | Y )
such that

sup
γ∈Γ

inf
i=1,...,n

∥Uτγg − fi∥X|Y ≤ ε1.

We claim that

∥(f |g)X|Y ∥L2(Y ) ≤ ε∥f∥L2(X) +
n∑
i=1

∥(Uτγ (f) | fi)X|Y ∥L2(Y ) (9.2)

for all γ ∈ Γ. By definition of conditional weakly mixing, this then yields

∥(f |g)X|Y ∥L2(Y ) = lim
n→∞

1

|Fn|
∑
γ∈Fn

∥(f |g)X|Y ∥L2(Y ) ≤ ε∥f∥L2(X),

hence (f |g)X|Y = 0 as desired.

So take γ ∈ Γ. We find a measurable partition {A1, . . . , An} of Y such that

inf
i=1,...,n

∥Uτγg − fi∥X|Y (y) = ∥Uτγg − fj∥X|Y (y)

for almost every y ∈ Aj where j ∈ {1, . . . , n}. Then w :=
∑n

i=1 1Ai
fi ∈ L2(X | Y )

satisfies

∥Uτγg − w∥X|Y =
n∑
i=1

1Ai
∥Uτγg − w∥X|Y =

n∑
i=1

1Ai
∥Uτγg − fi∥X|Y ≤ ε1.

By the conditional Cauchy–Schwarz inequality in Proposition 9.1.4 we therefore
obtain

|(Uτγf | Uτγg)X|Y | ≤ |(Uτγf | Uτγg − w)X|Y |+ |(Uτγf | w)X|Y |
≤ ∥Uτγf∥X|Y · ∥Uτγg − w∥X|Y + |(Uτγf | w)X|Y |
≤ ε∥Uτγf∥X|Y + |(Uτγf | w)X|Y |.

Since ∥(Uτγf | Uτγg)X|Y )∥L2(Y ) = ∥Uσγ (f | g)X|Y ∥L2(Y ) = ∥(f |g)X|Y ∥L2(Y ), this im-
plies

∥(f | g)X|Y ∥L2(Y ) = ∥(Uτγf | Uτγg)X|Y ∥L2(Y ) ≤ ε∥f∥L2(X) + ∥(Uτγf | w)X|Y ∥L2(Y ).

Using Proposition 9.1.4 (iii), we finally have

ε∥f∥L2(X) + ∥(Uτγf | w)X|Y ∥L2(Y ) ≤ ε∥f∥L2(X) +
n∑
i=1

∥(Uτγ (f) | fi)X|Y ∥L2(Y ),

and therefore obtain the desired estimate (9.2).
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For the “if” part of Proposition 9.1.10, we prove that if f ∈ L2(X | Y ) is not
conditionally weakly mixing, then it must non-trivially conditionally correlate with
a conditionally almost periodic function.

From the computation in Remark 9.1.8, it follows that f ∈ L2(X | Y ) is conditionally
weakly mixing if and only if

Pfix(Uτ×τ )(f ⊙ f̄) = 0.

Suppose f ∈ L2(X | Y ) is not conditionally weakly mixing; thus,

K := Pfix(Uτ×τ )(f ⊙ f̄) ̸= 0.

Notice that K ∈ L2(X ⊗Y X | Y ).

Now, we define the L∞(Y )-linear operator K∗Y : L2(X | Y )→ L2(X | Y ) by

(K ∗Y f)(x) :=
∫
X

K(x, x′)f(x′) dµq(x)(x
′). (9.3)

By Exercise 9.6, for all f ∈ L2(X | Y ),

∥K ∗Y f∥X|Y ≤ ∥K∥X⊗YX|Y ∥f∥X|Y . (9.4)

Since Pfix(Uτ×τ ) is an orthogonal projection, we have∫
Y

(K ∗Y f | f)X|Y dµY = (K ∗Y f | f)L2(X)

= (K | f ⊙ f̄)L2(X⊗YX)

= (Pfix(Uτ×τ )(f ⊙ f̄) | f ⊙ f̄)L2(X⊗YX)

= ∥Pfix(Uτ×τ )(f ⊙ f̄)∥2L2(X⊗YX)

= ∥K∥2L2(X⊗YX).

Thus, if K ̸= 0, then (K ∗Y f | f)X|Y ̸= 0. To complete the proof of the “if” part of
Proposition 9.1.10, it suffices to show that for every ε > 0 there is some measurable
subset E ⊆ Y with µY (E) ≥ 1 − ε such that 1EK ∗Y f is conditionally almost
periodic.

This is because, by choosing a measurable subset E ⊆ Y with sufficiently large
measure, we can ensure that the conditionally almost periodic function 1EK ∗Y f
satisfies

(1EK ∗Y f | f)X|Y = 1E(K ∗Y f | f)X|Y ̸= 0.

The following lemma is needed to complete the argument.
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Lemma 9.1.11. Let K ∈ L2(X ⊗Y X | Y ), let C > 0 be some constant, and let

M = {f ∈ L2(X | Y ) : ∥f∥L2(X|Y ) ≤ C}.

Then for every ε > 0 there is a a measurable set E ⊆ Y of measure µY (E) ≥ 1− ε
such that for every δ > 0 there exist finitely many g1, . . . , gn ∈ L2(X | Y ) with

sup
f∈M

min
1≤i≤n

∥1E((K ∗ f)− gi)∥L2(X|Y ) ≤ δ.

Proof. Fix ε > 0. Let (Kn) be a sequence of linear combinations of elementary
tensors g ⊙ h ∈ L∞(X ⊗Y X) such that ∥Kn −K∥L2(X⊗YX) → 0. Since

∥Kn −K∥L2(X⊗YX) = ∥∥Kn −K∥X⊗YX|Y ∥L2(Y ),

by passing to a subsequence, we have that ∥Kn −K∥X⊗YX|Y → 0 almost surely in
y ∈ Y . By Egorov’s theorem, there is a measurable set E in Y with µY (E) ≥ 1− ε
such that 1E∥Kn −K∥X⊗YX|Y → 0 in the norm of L∞(Y ).

Now for δ > 0 choose n large enough to guarantee that

∥Kn −K∥X⊗YX|Y 1E ≤
δ

2C
1.

By (9.4), we obtain for all f ∈M ,

∥Kn ∗Y f −K ∗Y f∥X|Y 1E ≤ ∥Kn −K∥X⊗YX|Y ∥f∥X|Y 1E ≤
δ

2C
· C1 =

δ

2
1. (9.5)

Write Kn =
∑N

i=1 gi ⊙ hi with gi, hi ∈ L∞(X). For all f ∈M , we have

Kn ∗Y f =
N∑
i=1

Uq(ci)gi,

where ci := (f |hi)X|Y ∈ L∞(Y ) satisfies ∥ci∥L∞(Y ) ≤ C ·maxj=1,...,N ∥∥hj∥X|Y ∥L∞(Y )

for all i.

Denote by D := maxj=1,...,N ∥gj∥L2(X|Y ). Let F be the finite set of all linear combi-
nations of g1, . . . , gN with coefficients from a finite set of complex numbers which
is δ

2ND
-dense in the disc of radius C. By the conditional triangle inequality, there

exists for each f ∈M some g ∈ F such that

∥Kn ∗Y f − g∥L2(X|Y ) < δ/2.

The claim follows from (9.5) by another application of the conditional triangle in-
equality.
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We continue with the proof of the “if” part of Proposition 9.1.10. Since f ∈ L2(X |
Y ), there is C > 0 such that ∥f∥L2(X|Y ) ≤ C, and therefore also ∥Uτγ (f)∥L2(X|Y ) ≤ C
for all γ ∈ Γ.

Let ε > 0. Let E be the measurable subset of Y with µY (E) ≥ 1− ε from Lemma
9.1.11. Let A =

⋃
γ∈Γ σ

−1
γ (E), and set

φ := K ∗Y f1q−1(A).

Since E ⊆ A, µY (A) ≥ 1 − ε, so it suffices to show that φ is conditionally almost
periodic.

So take δ > 0 and let F be the finite set from Lemma 9.1.11. Write A as a disjoint
union

⋃
nAn of measurable sets An ⊆ σ−1

γn (E) for some γn ∈ Γ, and define g′ :=∑
n≥1 Uτγn (g)1An for all g ∈ F . Denote their collection by F ′ = {g′ : g ∈ F}. By

construction, Uτγ (φ)1Ac = 0 for all γ ∈ Γ. Since Uτγ (K ∗Y h) = K ∗Y Uτγ (h) by the
invariance of K, we have

sup
γ∈Γ

inf
g′∈F ′
∥Uτγ (φ)− g′∥X|Y ≤ δ1,

concluding the proof of Proposition 9.1.10.

We now state and prove the beautiful Furstenberg–Zimmer structure theorem in
the setting of countable abelian group actions on standard Lebesgue spaces. This
theorem describes any such system as a tower, called the Furstenberg–Zimmer tower,
of compact extensions, followed by a weakly mixing extension of the inverse limit of
the compact extensions.

Theorem 9.1.12. Let (X, τ) be a concrete measure-preserving system. Then there
exists an ordinal number α and a subsystem (Yβ, σβ) for every β ≤ α with the
following properties:

(i) (Y∅, σ∅) is the trivial system on a singleton.

(ii) For every successor ordinal β + 1 ≤ α, (Yβ+1, σβ+1) is a compact extension of
(Yβ, σβ).

(iii) For every limit ordinal β ≤ α, (Yβ, σβ) is the inverse limit of the (Yη, ση) in
the sense that L2(Yβ) is the closure of

⋃
η<β L

2(Yη).

(iv) (X, τ) is the weakly mixing extension of (Yα, σα).

Proof. By Theorem 9.1.9, the extension (X, τ) → (Y∅, σ∅) is either weakly mixing,
in which case we set α = 0, or the maximal compact extension (Y1, σ1) → (Y∅, σ∅)
below (X, τ) is not isomorphic to (Y∅, σ∅).

If the latter holds, then by Theorem 9.1.9, the extension (X, τ)→ (Y1, σ1) is either
weakly mixing, in which case we set α = 1, or the maximal compact extension
(Y2, σ2)→ (Y1, σ1) below (X, τ) is not isomorphic to (Y1, σ1).
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We may need to continue this process and repeat the previous step.

Repeating these steps in a transfinite recursion, while passing to inverse limits at
limit ordinals, this process will eventually terminate at an ordinal number α.

Since L2(X) is separable, α is a countable ordinal.



9.2. COMMENTS AND FURTHER READING 143

9.2 Comments and Further Reading
Furstenberg–Zimmer structure theory originates from the foundational works of
Furstenberg [Fur77] and Zimmer [Zim76a, Zim76b]. The proof we present is inspired
by and combines arguments from Furstenberg’s presentation in [Fur14] and Tao’s
presentation in [Tao09], while extending the relative dichotomy and the Furstenberg–
Zimmer structure theorem to the setting of arbitrary countable discrete abelian
groups.

One can also formalize and prove a relative dichotomy and a Furstenberg–Zimmer
structure theorem for the measure-preserving action of arbitrary discrete groups
[Jam23, EHK24].

In Lectures 5, 6, and 7, we proved characterizations of compact and weakly mix-
ing systems. Analogous characterizations exist in the setting of compact extensions
and weakly mixing extensions, and we will address these after proving Furstenberg’s
multiple recurrence theorem (Theorem 1.1.7) by an induction on the Furstenberg–
Zimmer tower in Theorem 9.1.12 for Z-actions, and via the Furstenberg correspon-
dence principle, also Szemerédi’s theorem in the next lectures.
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9.3 Exercises
Exercise 9.1. Prove Proposition 9.1.4.

Exercise 9.2. Prove Proposition 9.1.6.

In the next two exercises, we consider the skew-rotation (T2, τa ⋊ c) from Example
7.2.6, which is the cocycle extension of the torus rotation (T, τa), a ∈ T, by the
identity map c := idT : T → T. This is a measure-preserving Z-system if we equip
T2 with the Haar measure (check this!).

Exercise 9.3. Let a not be a root of unity. Let f ∈ L2(T2 | T) be the function
defined by

f(x, y) := yn whenever n ≥ 1 and x ∈
{
e2πiz : z ∈

(
1

n+ 1
,
1

n

]}
.

Show that f is not conditionally almost periodic but is a limit of a sequence (fn)n∈N
of conditionally almost periodic elements fn ∈ L2(T2 | T) for n ∈ N.

Exercise 9.4. (i) Identify the Kronecker subsystem (see Definition 7.1.14) of the
skew-rotation (T2, τa ⋊ c).

(ii) Show that (T2, τa ⋊ c) is a compact extension of its Kronecker subsystem.

Exercise 9.5. Let (Y, σ) be a measure-preserving Z-system, let G be a compact
metrizable group with a closed subgroup H, let φ : Y → G be measurable (where
G is equipped with the Borel σ-algebra), and let Y ×φ G/H be the extension of
Y with underlying space Y × G/H, with measure equal to the product of µY and
Haar measure, and shift map T : (y, g) 7→ (σ(y), φ(y)g). Show that Y ×φ G/H is a
compact extension of Y .

Exercise 9.6. Establish the bound (9.4).



Lecture 10

In this lecture and the next, we prove van der Waerden’s theorem (cf. Theorem
4.2.2) and Szemerédi’s theorem (cf. Theorem 1.1.8).

In both cases, we will use dynamics. For van der Waerden’s theorem, we employ
topological dynamics, translating the problem into a multiple recurrence statement
within a shift system.

For Szemerédi’s theorem, we use ergodic theory. Specifically, we establish Sze-
merédi’s theorem by proving Furstenberg’s multiple recurrence theorem (cf. The-
orem 1.1.7) and applying Furstenberg’s correspondence principle (cf. Theorem 4),
as demonstrated in the special case of Roth’s theorem in Lecture 8. This will be
achieved through induction on the Furstenberg–Zimmer tower (cf. Theorem 9.1.12).
More precisely, we show that the multiple recurrence property is preserved under
compact extensions, weakly mixing extensions, and inverse limits.

To achieve this, we will use van der Waerden’s theorem to prove the preservation of
the multiple recurrence property under compact extensions. This will be addressed
in this lecture, alongside the dynamical proof of van der Waerden’s theorem.

10.1 Van der Waerden’s Theorem
We restate van der Waerden’s theorem:

Theorem 10.1.1 (Infinitary version). Partition the natural numbers N into finitely
many cells N = A1∪ · · · ∪Ar. Then there exists one cell Aj that contains arithmetic
progressions of arbitrary (finite) length.

Before translating the infinitary version of van der Waerden’s theorem into a state-
ment about multiple recurrence in topological dynamics, we state the following fini-
tary version, which will be useful in the proof of Szemerédi’s theorem. The equiva-
lence of the infinitary version and the finitary version is left as Exercise 10.1.

Theorem 10.1.2 (Finitary Version). Let r ∈ N and k ∈ N. Then there exists

145
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a smallest number W (r, k) ∈ N such that any coloring of {1, . . . , N}, where N ≥
W (r, k), into r colors contains a monochromatic arithmetic progression of length k.

Remark 10.1.3. The numbersW (r, k) are known as van der Waerden numbers, and
it remains an open and important problem in Ramsey theory to establish “reasonable
bounds” for the values of W (r, k) for most values of r and k. The best currently
known upper bound is due to Gowers [Gow01], who proved that

W (r, k) ≤ 22
r2

2k+9

.

It is a fun combinatorial exercise to show that W (2, 3) = 9.

Let N = C1 ∪ · · · ∪ Cr be a partition of the natural numbers. Define D0 = {0},
Di := Ci for 1 ≤ i ≤ r, and Di := −Ci−r for r + 1 ≤ i ≤ 2r. This construction
yields a partition of the integers Z = D0 ∪ D1 ∪ · · · ∪ D2r. Now, suppose one of
the cells Di contains an arithmetic progression a, a + n, . . . , a + (k − 1)n of length
k ≥ 2. Then either a, a + n, . . . , a + (k − 1)n ∈ Cj for some 1 ≤ j ≤ r, or
a, a+n, . . . , a+ (k− 1)n ∈ −Cj for some 1 ≤ j ≤ r. In the latter case, the negative
sequence −(a + (k − 1)n), . . . ,−(a + n),−a lies in Cj. Thus, we conclude that in
order to prove Theorem 10.1.1, it suffices to prove a version of the theorem where
N is replaced by Z.

We start with a more general definition.

Definition 10.1.4. Let k ≥ 1. A set P ⊆ Zk is said to be a van der Waer-
den collection if for every finite partition Z = C1 ∪ C2 ∪ . . . ∪ Cr, there exist
(γ1, γ2, . . . , γk) ∈ P and j ∈ {1, 2, . . . , r} such that {γ1, γ2, . . . , γk} ⊆ Cj.

By the pigeonhole principle, to prove Theorem 10.1.1, it is enough to prove:

Theorem 10.1.5. For every k ≥ 1, the arithmetic progressions of length k in Z
form a van der Waerden collection.

We will translate the statement in Theorem 10.1.5 into a statement about the ex-
istence of multiply recurrent points in a topological dynamical system (K, τ) over
Γ = Z. Throughout this lecture, we will consider topological dynamical systems
(K, τ) over Z, where K is a metrizable compact space.

We provide the dynamical counterpart of a van der Waerden collection:

Definition 10.1.6. Let k ≥ 1. A set P ⊆ Zk is said to be a Birkhoff collection
if for every topological dynamical system (K, τ), x ∈ K, and any ε > 0, there exists
(γ1, γ2, . . . , γk) ∈ P such that τ γ1x, τ γ2x, . . . , τ γkx are pairwise ε-close.

In the next section, we will prove the following multiple recurrence theorem:

Theorem 10.1.7. Let (K, τ) be a topological dynamical system and let d be a metric
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for K. For any k ∈ N and any ε > 0, there exist x ∈ K and γ ∈ N such that
d(τ jγx, x) < ε for all j = 1, 2, . . . , k.

Assuming Theorem 10.1.7 for now, in order to prove Theorem 10.1.5, it remains to
establish the following two results.

Proposition 10.1.8. Let k ∈ N. Then the set of k-term arithmetic progressions is
a Birkhoff collection.

Proof. Let x ∈ K and let L be the orbit closure of x. By Theorem 10.1.7, there are
y ∈ L and n ∈ N such that

y, τn(y), τ 2n(y), . . . , τ (k−1)n(y)

are pairwise ε-close to each other. Since y is in the orbit closure of x, there is m ∈ Z
such that

y, τn(y), τ 2n(y), . . . , τ (k−1)n(y)

are ε-close to
τm(x), τn+m(x), τ 2n+m(x), . . . , τ (k−1)n+m(x)

respectively. By the triangle inequality,

τm(x), τn+m(x), τ 2n+m(x), . . . , τ (k−1)n+m(x)

are pairwise 3ε-close to each other. This finishes the proof.

Lemma 10.1.9. Every Birkhoff collection is a van der Waerden collection.

Proof. Assume that P is a Birkhoff collection. Fix a partition Z = C1∪C2∪ . . .∪Cr
and consider the topological dynamical system K = {1, 2, . . . , r}Z with the shift
map given by τ((xn)n∈Z) := (xn−1)n∈Z (cf. Example 3.2.5). We consider the metric
d on K given by

d(x, y) =

{
2−k if x ̸= y and k = min{|n| | xn ̸= yn},
0 if x = y.

Note that d(x, y) < 1 if and only if x0 = y0.

Define the point x ∈ K by setting xn = i if n ∈ Ci. Let 1 > ε > 0. Since P is a
Birkhoff collection, there exists (γ1, γ2, . . . , γk) ∈ P such that τ γ1(x), τ γ2(x), . . . , τ γk(x)
are pairwise ε-close. By the choice of d, this implies xγ1 = xγ2 = . . . = xγk , and thus
{γ1, γ2, . . . , γk} ⊆ Cj for some j ∈ {1, 2, . . . , r}.
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10.2 Minimality and Recurrence

In this section, we prove Theorem 10.1.7. We need some preparation.

Definition 10.2.1. Let (K, τ) be a topological dynamical system. A subset L ⊆ K
is said to be τ-invariant if τ(L) = L. We say that L ⊆ K is minimal if L is
closed, τ -invariant, and contains no proper, closed, non-empty τ -invariant subsets.
The system (K, τ) is called minimal if K is a minimal subset.

Remark 10.2.2. Any minimal subset L ⊆ K of a topological dynamical system
(K, τ) induces a subsystem (L, σ) of (K, τ), where σ is the restriction of τ to L.

Proposition 10.2.3. Every topological dynamical system (K, τ) admits a minimal
subsystem.

Proof. Let M be the family of all non-empty closed τ -invariant subsets L of K.
Since K ∈M,M is not empty. Define a partial order onM by inclusion.

For any totally ordered collection C ⊆ M, the intersection of any finite number of
elements in C is non-empty. As K is compact, the intersection of all elements in C
is non-empty. Denote this intersection by L0. Since each element in C is closed and
τ -invariant, L0 is also closed and τ -invariant. Therefore, L0 ∈M, and L0 is a lower
bound for C.
By Zorn’s Lemma, the familyM has a minimal element.

We also need the following notions (cf. Exercise 4.7).

Definition 10.2.4. A subset A ⊆ Z is said to be syndetic if there exists a finite
set F ⊆ Z such that ⋃

γ∈F

(A+ γ) = Z,

that is, if finitely many translates of A cover Z.

Let (K, τ) be a topological dynamical system. A point x ∈ K is said to be uni-
formly recurrent if for every neighborhood U of x, the set

{γ ∈ Z : τ γ(x) ∈ U}

is a syndetic subset of Z.

Theorem 10.2.5. In a minimal topological dynamical system (K, τ), every point of
K is uniformly recurrent.

Proof. Let x ∈ K and let U be an open neighborhood of x. By Exercise 10.2 and
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compactness, there exist γ1, . . . , γn ∈ Z such that

n⋃
i=1

τ−γi(U) = K.

For any γ ∈ Z, τ γ(x) ∈ τ−γi(U) for some 1 ≤ i ≤ n. Thus, τ γ+γi(x) ∈ U .

Hence, the set {γ ∈ Z : τ γ(x) ∈ U} is syndetic, and therefore x is uniformly
recurrent.

If x ∈ K is uniformly recurrent, then x is also recurrent in the sense that for every
neighborhood U of x, there exists γ ∈ N such that τ γ(x) ∈ U .

In this sense, Theorem 10.1.7 extends Theorem 10.2.5 to the setting of multiple
recurrence.

We need the following two preliminary lemmas.

Lemma 10.2.6 (Lebesgue’s Covering Lemma). Let K be a compact metric space,
and let O be an open covering of K. Then there exists ε > 0 such that for all x ∈ K
there exists O ∈ O such that B(x, ε) ⊆ O.

Proof. For a proof, see [Sin19, Lemma 5.3.9].

Lemma 10.2.7. Let (K, τ) be a minimal topological dynamical system and let k ∈ N.
Suppose that for every ε > 0 there exist x ∈ K and γ ∈ N such that d(τ jγ(x), x) < ε
for all j = 1, 2, . . . , k. Then for any ε > 0, there exists a dense subset D ⊆ K such
that for each y ∈ D, there exists γ ∈ N with d(τ jγ(y), y) < ε for all j = 1, 2, . . . , k.

Proof. Let ε > 0 and let U be an open ball of radius ε. By minimality and com-
pactness, there exists a finite set H ⊆ Z such that K is covered by the H-translates
of U . By Lemma 10.2.6, we find δ > 0 such that for each z ∈ K there is γ ∈ H with
B(x, δ) ⊆ τ γ(U).

By assumption, there exist z0 ∈ K and γ′ ∈ N such that d(τ jγ′(z0), z0) < δ for all j =
1, 2, . . . , k. By the choice of δ, there exists some γ̃ ∈ H such that B(z0, δ) ⊆ τ γ̃(U).
Then τ−γ̃(B(z0, δ)) ⊆ U , and setting w := τ−γ̃(z0) ∈ U , we have d(w, τ jγ′(w)) < ε
for all j = 1, . . . , k. Since ε, U were arbitrary, this proves the claim.

Proof of Theorem 10.1.7. By Proposition 10.2.3, we may assume without loss of
generality that (K, τ) is minimal. The proof is by induction on k. The base case
k = 1 is Theorem 10.2.5.

Assume that the statement holds for some k ≥ 1, meaning that for any ε > 0,
there exist x ∈ K and γ ∈ N such that d(τ jγx, x) < ε for j = 1, 2, . . . , k. By
Lemma 10.2.7, for each ε > 0, there is a dense set D ⊆ K such that for all y ∈ D,
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there exists γ ∈ N with d(τ jγy, y) < ε for j = 1, 2, . . . , k. We show that the same
conclusion holds for k + 1.

Fixing ε > 0, we can choose x0 ∈ K and an integer γ0 ∈ N such that d(τ jγ0x0, x0) <
ε/2 for j = 0, 1, 2, . . . , k. Since τ is a bijection, we can choose x1 ∈ K such that
τ γ0x1 = x0. Then for j = 1, 2, . . . , k,

d(τ (j+1)γ0x1, x0) = d(τ jγ0τ γ0x1, x0) = d(τ jγ0x0, x0) < ε/2.

This means that for j = 1, 2, . . . , k + 1,

d(τ jγ0x1, x0) < ε/2.

Since τ is continuous, the same conclusion holds in some neighborhood of x1. Thus
we can choose ε1 with 0 < ε1 <

ε
2

such that d(τ jγ0y, x0) < ε/2 for j = 1, 2, . . . , k+1
and for all y ∈ B(x1, ε1). By the inductive assumption, there exists a point y1 ∈
B(x1, ε1/2) and γ1 ∈ Z such that

d(τ jγ1y1, y1) < ε1/2 for j = 1, 2, . . . , k.

This means that y1 and τ jγ1y1, for j = 1, 2, . . . , k, lie in B(x1, ε1). Thus for j =
1, 2, . . . , k + 1,

d(τ jγ0(τ (j−1)γ1y1), x0) < ε/2.

Taking any point x2 ∈ K such that τ γ1x2 = y1, we have

d(τ jγ1x2, x1) < ε1 < ε/2

for j = 1, 2, . . . , k + 1, as well as:

d(τ j(γ1+γ0)x2, x0) < ε/2.

Inductively, we find x0, x1, x2, . . . ∈ K and γ1, γ2, γ3, . . . ∈ N such that for any i ∈ N
and for j = 1, 2, . . . , k + 1,

d(τ jγixi, xi−1) < ε/2,

d(τ j(γi−1+γi−2)xi, xi−2) < ε/2,

and
d(τ j(γi−1+...+γ0)xi, x0) < ε/2.

By compactness of K, there exist integers 0 < m < l such that d(xl, xm) < ε/2.
Thus

d(τ j(γl−1+...+γm)xl, xl) ≤ d(xl, xm) + d(xm, τ
j(γl−1+...+γm)xl) < ε

for j = 1, 2, . . . , k + 1. Taking x = xl and γ = γl−1 + . . .+ γm, we have produced a
point x ∈ K such that d(τ jγx, x) < ε for j = 1, 2, . . . , k + 1.
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10.3 Multiple Recurrence and Compact Extensions
We will establish the multiple recurrence statement for measure-preserving systems
in Theorem 4.2.10.

Definition 10.3.1. We say that a measure-preserving system (X,T ) over Γ = Z
has the multiple recurrence property if for every k ∈ N and each f ∈ L∞(X)
with f ≥ 0,

∫
X
fdµX > 0 we have

lim inf
N→∞

1

N

N−1∑
n=0

∫
X

f · Un
T f · · ·Ukn

T f > 0.

Our goal is to show that every measure-preserving system (X,T ) over Γ = Z has
the multiple recurrence property. Clearly, trivial systems have this property. Using
the Furstenberg–Zimmer structure theorem (see Theorem 9.1.12) and an induction
argument, it now suffices to show that the multiple recurrence property is preserved
by compact extensions, weakly mixing extensions and inverse limits of measure-
preserving systems. We start with the first of these three problems.

Theorem 10.3.2. Let q : (X, τ)→ (Y, σ) be a compact extension of concrete measure-
preserving systems over Γ = Z. If (Y, σ) has the multiple recurrence property, then
so does (X, τ).

We first prove two lemmas.

Lemma 10.3.3. Let q : (X, τ)→ (Y, σ) be a compact extension of concrete measure-
preserving systems over Γ = Z. If A ⊆ X is measurable with µX(A) > 0, we find a
measurable subset B ⊆ A with µX(B) > 0 and the following two properties.

(i) 1B is conditionally almost periodic.

(ii) For almost every y ∈ Y we have E(1B | Y )(y) > 1
2
µX(B) or E(1B | Y )(y) = 0.

Proof. We first build a subset with property (ii). Consider the element

C := {y ∈ Y | E(1A | Y )(y) > µX(A)/2} ∈ Σ(Y )

and A′ := A ∩ q∗(C) ∈ Σ(X). Then E(1A′ | Y ) = E(Uq(1C)1A | Y ) = 1CE(1A | Y ),
and therefore clearly

E(1A′ | Y )(y) > µX(A)/2 ≥ µX(A′)/2

for almost every y ∈ C, and E(1A′ | Y )(y) = 0 for almost every y ∈ Y \ C.

Assuming that A′ is a nullset, we have

µX(A) = µX(A ∩ q∗(Y \ C)) =
∫
Y \C

E(1A | Y ) ≤ µX(A)/2,
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a contradiction. We conclude that µX(A′) > 0.

Replacing A by A′ we may therefore assume that property (ii) holds (where B = A).
We now construct B ⊆ A with µX(B) > 0, which still satisfies (ii), but in addition
also property (i). For n ∈ N let εn := µX(A)

2n+1 and choose a conditionally almost
periodic fn ∈ L2(X | Y ) with ∥1A − fn∥L2(X) < εn. Let further

Cn := {y ∈ Y | ∥1A − fn∥2X|Y (y) ≥ εn} ∈ Σ(Y ) for n ∈ N

and consider B := A \
⋃
n∈N q

∗(Cn) ∈ Σ(X). Since

µY (Cn) ≤
1

εn

∫
Cn

∥1A − fn∥2X|Y ≤
1

εn

∫
Y

∥1A − fn∥2X|Y =
1

εn
∥1A − fn∥2L2(X) ≤ εn

for each n ∈ N, we obtain that

µX(B) ≥ µX(A)−
∞∑
n=1

µY (Cn) ≥ µX(A)−
∞∑
n=1

µX(A)

2n+1
=

1

2
µX(A) > 0.

We show that B still has property (ii). Write

E :=

{
y ∈ Y : E(1A | Y )(y) ≥ 1

2
µX(A)

}
∈ Σ(Y ).

Since E(1B | Y ) = 1Y \
⋃

n∈N CnE(1A | Y ) we have E(1B | Y )(y) ≥ 1
2
µX(A) ≥ 1

2
µX(B)

for almost every y ∈ E \
⋃
n∈NCn, and E(1B | Y )(y) = 0 for almost every y ∈

(Y \ E) ∪
⋃
n∈NCn.

We finally prove that it also satisfies (i), i.e., that 1B is conditionally almost periodic.
For ε > 0 let k ∈ N with

√
εk ≤ ε

2
. For m ∈ Z we then have

1Y \σ−m(
⋃

n∈N Cn)∥Um
τ 1B − Um

τ fk∥X|Y = Um
σ (1Y \

⋃
n∈N Cn∥1B − fk∥X|Y )

= Um
σ (1Y \

⋃
n∈N Cn∥1A − fk∥X|Y )

≤
√
εk1Y \σ−m(

⋃
n∈N Cn) ≤

ε

2
1Y \σ−m(

⋃
n∈N Cn).

On the other hand,

1σ−m(
⋃

n∈N Cn)∥Um
τ 1B∥X|Y = ∥Um

τ (1q∗(⋃n∈N Cn)∩B)∥X|Y = 0.

Since fk is conditionally almost periodic, we find g1, . . . , gl ∈ L2(X | Y ) with

inf
1≤j≤l

∥Um
τ fk − gj∥X|Y ≤

ε

2

for every m ∈ Z. Setting g0 := 0 we then have inf0≤j≤l ∥Um
τ 1B − gj∥X|Y ≤ ε1 for

each m ∈ Z by the triangle inequality.
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Lemma 10.3.4. For a sequence (an)∈N in [0, 1] the following assertions are equiv-
alent.

(a) lim infN→∞
1
N

∑N
n=1 an > 0.

(b) There is some c > 0 such that d({n ∈ N | an > c}) > 0.

Proof. Let c > 0. Writing EN := {n ∈ {1, . . . , N} | an > c} for N ∈ N we obtain

1

N

N∑
n=1

an ≥
1

N

∑
n∈EN

an ≥ c · |EN |
N

and

1

N

N∑
n=1

an ≤
1

N

∑
n∈EN

1 +
1

N

∑
n/∈EN

an ≤
|EN |
N

+
1

N

∑
n/∈EN

c ≤ |EN |
N

+ c.

This yields

c · d({n ∈ N | an > c}) ≤ lim inf
N→∞

1

N

N∑
n=1

an ≤ d({n ∈ N | an > c}) + c

for every c > 0 which readily implies the desired equivalence.

We now prove the lifting property for compact extensions.

Proof of Theorem 10.3.2. We take f ∈ L∞(X) with f ≥ 0,
∫
X
fdµX > 0 and k ∈ N.

Since there is A ∈ Σ(X) with µX(A) > 0 and a1A ≤ f for some a > 0, we may
assume that f = 1A for A ∈ Σ(X) from the get go. Applying Lemma 10.3.3 we
may further assume that there is a measurable non-null subset B ⊆ Y such that
E(1A | Y )(y) > 1

2
µX(A) for every y ∈ B and that 1A is conditionally almost periodic.

For ε := µX(A)
6k

> 0 choose g1, . . . , gm ∈ L2(X | Y ) such that

inf
1≤i≤m

∥Un
τ 1A − gi∥X|Y ≤ ε1

for every n ∈ Z.

Now let N := W (m, k+1) be the van der Waerden number (see Theorem 10.1.2) for
arithmetic progressions of length k + 1 and m colors, and consider the finite index
set

I := {(i, d, j) ∈ N3 | i ≤ N, i+ kd ≤ N, j ≤ m}.

We further abbreviate

Bn := B ∩ σ−n(B) ∩ · · · ∩ σ−Nn(B) ∈ Σ(Y )
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for n ∈ N. Since (Y, σ) has the multiple recurrence property we can apply Lemma
10.3.4 to find some c > 0 such that the set

D := {n ∈ N | µY (Bn) ≥ c}

satisfies d(D) > 0. For n ∈ D we claim that

∃d ∈ {1, . . . , N} : µX(A ∩ τ−dn(A) ∩ · · · ∩ τ−kdn(A)) ≥
c

6|I|
µX(A). (10.1)

We deduce this statement below. Let us however first show how this claim implies
the desired assertion

lim inf
N→∞

1

N

N−1∑
n=0

∫
X

f · Un
τ f · · ·Ukn

τ f > 0.

Using that f = 1A and applying Lemma 10.3.4, it suffices to check that the set

E :=

{
n ∈ N

∣∣∣∣µX(A ∩ τ−n(A) ∩ · · · ∩ τ−kn(A)) ≥ c

6|I|
µX(A)

}
satisfies d(E) > 0. Let M0 ∈ N be such that

|D ∩ {1, . . . ,M}]| ≥ Md(D)

2

for all M ≥ M0. Let L ≥ M0N and write L = MN + l for some M ≥ M0 and
l ∈ {0, . . . , N − 1}. For each n ∈ D ∩ {1, . . . ,M} we use (10.1) to choose some
d(n) ∈ {1, . . . , N} with n · d(n) ∈ E. For every d ∈ {1, . . . , N} the map

{n ∈ D ∩ {1, . . . ,M} | d(n) = d} → E ∩ {1, . . . , NM}, n 7→ d(n)n

is clearly injective. Therefore, for any given n′ ∈ E∩{1, . . . , NM} there are at most
N many distinct elements in D ∩ {1, . . . ,M} with n′ = d(n)n. Thus,

|E ∩ {1, . . . , L}| ≥ |E ∩ {1, . . . ,MN}| ≥ 1

N
|D ∩ {1, . . . ,M}]| ≥ Md(D)

2N
,

hence

|E ∩ {1, . . . , L}|
L

≥ Md(D)

2NL
=
MNd(D)

2N2L
=

(L− l)d(D)

2N2L
≥ L− (N − 1)

L
· d(D)

2N2
.

It follows that d(E) ≥ d(D)
2N2 > 0. Thus, if we can show (10.1) for each n ∈ D, we

have proven the theorem.
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Now fix n ∈ D and show (10.1). We choose a representative hj,l of ∥U ln
τ 1A−gj∥X|Y ∈

L∞(Y ) for each l ∈ {0, . . . , N} and j ∈ {1, . . . ,m}. For every l ∈ {0, . . . , N} we
then find a nullset Zl in Y such that minj=1,...,m hj,l(y) ≤ ε for all y ∈ Y \ Zl, and
write Z :=

⋃N
l=0 Zl. By setting all representatives hj,l to 0 on Z for l ∈ {0, . . . , N}

and j ∈ {1, . . . ,m}, we may even assume that minj=1,...,m hj,l(y) ≤ ε holds for all
y ∈ Y . Consider the measurable sets

Ci,d,j :=
k⋂
l=0

{y ∈ Y | hj,(i+ld)(y) ≤ ε} ⊆ Y

for all (i, d, j) ∈ I. We claim that
⋃

(i,d,j)∈I Ci,d,j = Y . In fact, if y ∈ Y , then

{1, . . . , N} =
m⋃
j=1

{l ∈ {1, . . . , N} | hj,l(y) ≤ ε},

and by choice of N as the van der Waerden number W (m, k+1) (and disjointifying
the sets) we find some (i, d, j) ∈ I such that hj,i+ld(y) ≤ ε holds for all l ∈ {0, . . . , k},
i.e., y ∈ Ci,d,j.
By the pigeonhole principle we now find some element (i, d, j) ∈ I such that
µY (Ci,d,j ∩Bn) ≥ µY (Bn)

|I| . For almost every y ∈ σin(Ci,d,j ∩Bn) we have

∥U ldn
τ 1A − U−in

τ gj∥X|Y (y) = ∥U (i+ld)n
τ 1A − gj∥X|Y (σ

−iny) = hj,i+ld(σ
−iny) ≤ ε,

and therefore

∥U ldn
τ 1A − 1A∥X|Y (y) ≤ ∥U ldn

τ 1A − U−in
τ gj∥X|Y (y) + ∥U−in

τ gj − U0dn
τ 1A∥X|Y (y)

≤ 2ε =
µX(A)

3k

for all l ∈ {0, . . . , k}. By an application of the conditional Cauchy–Schwarz inequal-
ity and a telescopic sum this yields for almost every y ∈ σin(Ci,d,j ∩Bn) that

|E(1A · Udn
τ 1A · · ·Ukdn

τ 1A | Y )− E(1k+1
A | Y )|(y) ≤ µX(A)

3
,

and thus

E(1A · Udn
τ 1A · · ·Ukdn

τ 1A | Y )(y) ≥ E(1A | Y )(y)− µX(A)

3

since 1k+1
A = 1A. Using that σin(Ci,d,j ∩Bn) ⊆ σin(Bn) ⊆ B, we further obtain that

E(1A | Y )(y) > 1
2
µX(A) for almost every y ∈ σin(Ci,d,j ∩ Bn) (by choice of B). But

then

E(1A · Udn
τ 1A · · ·Ukdn

τ 1A | Y )(y) ≥ µX(A)

6



156 LECTURE 10.

for almost every y ∈ σin(Ci,d,j ∩Bn,N). We integrate over Y to finally obtain

µX(A ∩ τ−dn(A) ∩ · · · ∩ τ−kdn(A)) =
∫
Y

E(1A · Udn
τ 1A · · ·Ukdn

τ 1A | Y )

≥
∫
σin(Ci,d,j∩Bn)

E(1A · Udn
τ 1A · · ·Ukdn

τ 1A | Y )

≥ µX(A)

6
µY (σ

in(Ci,d,j ∩Bn)) ≥
µY (Bn) · µX(A)

6|I|

≥ cµX(A)

6|I|

since n ∈ DN . This shows (10.1).
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10.4 Comments and Further Reading
Solving a conjecture of Schur, van der Waerden proved Theorem 10.1.1 in [vdW27]
using combinatorial methods. The translation of this result into the dynamical for-
mulation of Theorem 10.1.7, along with its proof, was first provided by Furstenberg
and Weiss in [FW78]. Our proof is based on a proof from unpublished lecture notes
by Bryna Kra.

There are several ways to demonstrate that compact extensions preserve the multiple
recurrence property. Here, we adopt an approach by Bergelson (see [Ber06, Theorem
4.2.17] and also [EW11, Subsection 7.9.1]), which utilizes van der Waerden’s theorem
(see also [Tao09] and [Fur14, Section 7.3]).

In his original ergodic-theoretic approach to Szemerédi’s theorem [Fur77], Fursten-
berg established the lifting property for compact extensions between ergodic systems
by leveraging a representation result (similar to the use of the Halmos–von Neumann
theorem in the proof of Theorem 8.2.1). We will discuss such a representation result
later in this course.

For an alternative proof of the lifting property for compact extensions, see [FKO82]
and [EW11, Subsection 7.9.2].
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10.5 Exercises
Exercise 10.1. Show that Theorem 10.1.1 is equivalent to Theorem 10.1.2.

Exercise 10.2. Show that a topological dynamical system (K, τ) is minimal if and
only if the orbit closure of any element x ∈ K is K itself.

Exercise 10.3. Show that a syndetic set in Z contains arbitrarily long arithmetic
progressions.

Exercise 10.4. Show that the conclusion of van der Waerden’s Theorem does not
hold for infinite length progressions, meaning show that there exists a finite partition
of N such that no piece contains an infinite length arithmetic progression.

Exercise 10.5. Use van der Waerden’s Theorem to show that for all α ∈ R and
ε > 0 there exist m,n ∈ N such that |n2α − m| < ε. Generalize this for any
polynomial p(n) with integer coeffiecents such that p(0) = 0.

Exercise 10.6. Prove Grünwald’s theorem: For any finite partition Nm = C1∪C2∪
· · · ∪ Cr, and any k ≥ 1, there exist some Cj, some d ∈ N, and some b ∈ Nm such
that

b+ d(x1, x2, . . . , xm) ⊆ Cj, 1 ≤ xi ≤ k, 1 ≤ i ≤ m.



Lecture 11

This lecture is divided into two parts. In the first part, we establish that the mul-
tiple recurrence property is preserved under weakly mixing extensions and under
taking inverse limits. Since it was demonstrated in the previous lecture that the
multiple recurrence property is also preserved under compact extensions, applying
the Furstenberg–Zimmer structure theorem completes the proof of Furstenberg’s
multiple recurrence theorem. Through Furstenberg’s correspondence principle, this
result also establishes Szemerédi’s theorem.

In the second part of this lecture (and continuing into the next lecture), we delve
deeper into the understanding and classification of compact extensions. This classifi-
cation of compact extensions will be useful in the final segment of our ISem lectures,
where we introduce a significant enhancement of Furstenberg–Zimmer structure the-
ory, known as the Host–Kra or Host–Kra–Ziegler structure theory.

11.1 Multiple Recurrence and Weakly Mixing Ex-
tensions

In this section, we establish that the multiple recurrence property as defined in
Definition 10.3.1 is preserved under weakly mixing extensions:

Theorem 11.1.1. Let q : (X, τ)→ (Y, σ) be a weakly mixing extension of concrete
measure-preserving system over Γ = Z. If (Y, σ) has the multiple recurrence prop-
erty, then so does (X, τ).

Theorem 11.1.1 is an easy consequence of the following statement, see Exercise
11.1.

Proposition 11.1.2. Let q : (X, τ) → (Y, σ) be a weakly mixing extension of con-
crete measure-preserving system over Γ = Z. For all k ∈ N and f1, . . . , fk ∈ L∞(X)

159
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we have

lim
N→∞

[
1

N

N−1∑
n=0

Un
τ f1 · · ·Ukn

τ fk − Uq
(

1

N

N−1∑
n=0

Un
σE(f1 | Y ) · · ·Ukn

σ E(fk | Y )

)]
= 0.

Proof. We show the statement by induction on k ∈ N. For k = 1 and f1 ∈ L∞(X)
we obtain that the limit

h := lim
N→∞

[
1

N

N−1∑
n=0

Un
τ f1 − Uq

(
1

N

N−1∑
n=0

Un
σE(f1 | Y )

)]

= lim
N→∞

1

N

N−1∑
n=0

Un
τ (f1 − UqE(f1 | Y ))

exists by the mean ergodic theorem and is an element of L∞(X). However, since
f := f1 − UqE(f1 | Y ) ∈ L∞(X) satisfies E(f | Y ) = 0, we obtain

(h|h)L2(X) =

∣∣∣∣ limN→∞

1

N

N−1∑
n=0

(Un
τ f |h)L2(X)

∣∣∣∣ = ∣∣∣∣ limN→∞

1

N

N−1∑
n=0

∫
Y

(Un
τ f |h)X|Y

∣∣∣∣
≤ lim

N→∞

1

N

N−1∑
n=0

∥(Un
τ f |h)X|Y ∥L2(Y ) = 0

by the definition of weakly mixing extensions and Exercise 7.2 (i). This shows h = 0.

Now let k ∈ N and assume that the claim holds for k − 1. Let f1, . . . , fk ∈ L∞(X)
and abbreviate gi := E(fi | Y ) for i ∈ {1, . . . , k}. By telescopic summing we can
write

Un
τ f1 · · ·Ukn

τ fk − Uq(Un
σ g1 · · ·Ukn

σ gk)

=
k∑
j=1

Un
τ f1 · · ·U (j−1)n

τ fj−1 · U jn
τ (fj − Uqgj) · U (j+1)n

τ Uqgj+1 · · ·Ukn
τ Uqgk

for each n ∈ N. It therefore suffices to show that

lim
N→∞

1

N

N−1∑
n=0

Un
τ h1 · · ·Ukn

τ hk = 0

whenever E(hi | Y ) = 0 for some i ∈ {1, . . . , k}. We may assume that ∥hi∥∞ ≤ 1
for all i ∈ {1, . . . , k}. We want to apply the van der Corput Lemma (see Lemma
8.2.3) and set an := Un

τ h1 · · ·Ukn
τ hk for n ∈ N. Then

(an|an+m) =
∫
X

Un
τ h1 · · ·Ukn

τ hk · Un+m
τ h1 · · ·Uk(n+m)

τ hk

=

∫
X

g1,m · Un
τ g2,m · · ·U (k−1)n

τ gk,m
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for n,m ∈ N where gj,m := hjU
jm
τ hj for j ∈ {1, . . . , k}. Now consider the numbers

cm := lim supN→∞ | 1N
∑N−1

n=0 (an|an+m)| for m ∈ N. As a consequence of the induction
hypothesis and the Cauchy–Schwarz inequality we obtain

cm = lim sup
N→∞

∣∣∣∣ 1N
N−1∑
n=0

∫
X

g1,m · Uq(Un
σE(g2,m | Y ) · · ·U (k−1)n

σ E(gk,m | Y ))

∣∣∣∣
= lim sup

N→∞

∣∣∣∣ 1N
N−1∑
n=0

∫
Y

E(g1,m | Y ) · Un
σE(g2,m | Y ) · · ·U (k−1)n

σ E(gk,m | Y )

∣∣∣∣
for every m ∈ N. Now choose i ∈ {1, . . . , k} with E(hi | Y ) = 0. Since ∥hj∥∞ ≤ 1
for all j ∈ {1, . . . , k}, we obtain that

cm ≤ lim sup
N→∞

1

N

N−1∑
n=0

∫
Y

U (i−1)n
σ |E(gi,m | Y )| =

∫
Y

|E(hiU im
τ hi | Y )|

≤ ∥(hi|U im
τ hi)X|Y ∥L2(Y )

for every m ∈ N. Since hi ∈ L∞(X) is weakly mixing, a similar reasoning as in the
proof of Lemma 8.2.4 (using Exercise 7.2 (i)) shows that

lim sup
M→∞

1

M

M−1∑
m=0

cm ≤ lim sup
M→∞

1

M

M−1∑
m=0

∥(hi|U im
τ hi)X|Y ∥L2(Y )

≤ i lim sup
M→∞

1

iM

iM−1∑
m=0

∥(hi|Um
τ hi)X|Y ∥L2(Y ) = 0.

The van der Corput Lemma (see Lemma 8.2.3) therefore yields the claim.

11.2 Multiple recurrence and Inverse Limits
In this section, we establish that the multiple recurrence property, as defined in
Definition 10.3.1, is preserved under taking inverse limits. The following lemma
reduces this task to showing that a function in the inverse limit has relatively dense
support within the subsystems forming the inverse limit.

Lemma 11.2.1. Let q : (X, τ)→ (Y, σ) be an extension of concrete measure-preserving
systems over Γ = Z. Suppose that (Y, σ) satisfies the multiple recurrence property.
Let k ≥ 1 be an integer and let f ∈ L∞(X) with f ≥ 0,

∫
X
fdµX > 0 such that

µY

({
E(1{f>0} | Y ) > 1− 1

k

})
> 0.
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Then f satisfies

lim inf
N→∞

1

N

N−1∑
n=0

∫
X

f · Un
τ f · · ·Ukn

τ f > 0.

Proof. Let En = {f > 1
n
}. Applying the monotone convergence theorem for con-

ditional expectations (see Lemma 8.1.1) to the sequence 1E1 ≤ 1E2 ≤ . . ., we find
some ε > 0 such that

µY

({
E(1{f>ε} | Y ) > 1−

(
1

k
− ε
)})

> 0.

Denote F =
{
E(1{f>ε} | Y ) > 1−

(
1
k
− ε
)}

.

Since (Y, σ) satisfies the multiple recurrence property, by Lemma 10.3.4 there exists
some c > 0 such that the set of n ∈ Z satisfying

µY
(
F ∩ σ−n(F ) ∩ . . . ∩ σ−(k−1)n(F )

)
> c (11.1)

has positive lower density.

From f ≥ ε · 1E, where E = {f > ε}, we obtain

fUτn(f) · · ·Uτ (k−1)n(f) ≥ εk1E∩τ−n(E)∩...∩τ−(k−1)n(E).

Using the equality 1A = 1− 1Ac , we further get

fUτn(f) · · ·Uτ (k−1)n(f) ≥ εk

(
1−

k−1∑
j=0

1τ−jn(Ec)

)
.

Taking conditional expectations, we obtain

E(fUτn(f) · · ·Uτ (k−1)n(f) | Y ) ≥ εk

(
1−

k−1∑
j=0

Uσjn(E(1Ec | Y ))

)
.

Since 1Ec = 1− 1E, we can write

E(fUτn(f) · · ·Uτ (k−1)n(f) | Y ) ≥ εk

(
k−1∑
j=0

Uσjn(E(1E | Y ))− (k − 1)1

)
.

By the definition of F , we know

E(1E | Y ) > 1−
(
1

k
− ε
)

on F.



11.2. MULTIPLE RECURRENCE AND INVERSE LIMITS 163

Thus,

E(fUτn(f) · · ·Uτ (k−1)n(f) | Y ) ≥ εk+1 · k on F ∩ σ−n(F ) ∩ . . . ∩ σ−(k−1)n(F ).

Integrating this inequality over Y and using (11.1), we conclude that the set of n ∈ Z
such that ∫

X

fUτn(f) · · ·Uτ (k−1)n(f) dµX ≥ c · εk+1 · k

has positive lower density. The claim follows by applying Lemma 10.3.4.

We recall the definition of an inverse limit of a totally ordered family of subsys-
tems.

Let β be a countable limit ordinal, and let (Yα, σα)α<β be a totally ordered family
of factors of a fixed system (X, τ) over Γ = Z. By this, we mean that L2(Yα), α < β,
when identified with subspaces of L2(X), form an increasing family of closed, invari-
ant Markov sublattices of L2(X). Let (Yβ, σβ) be the concrete measure-preserving
system corresponding to the invariant Markov sublattice

⋃
α<β L

2(Yα). Without
further mention, for every α < β, we identify L2(Yα) with the Markov sublattice
Uqα(L

2(Yα)) of L2(Yβ) where qα : (Yβ, σβ)→ (Yα, σα) denotes the corresponding fac-
tor map.

We now establish that the multiple recurrence property is preserved under taking
inverse limits:

Theorem 11.2.2. Let β be a countable limit ordinal, let (Yα, σα)α<β be a totally
ordered family of concrete measure-preserving subsystems of a fixed system (X, τ)
over Γ = Z, and let (Yβ, σβ) be the inverse limit of the family (Yα, σα)α<β in the
above sense. If every (Yα, σα), α < β, satisfies the multiple recurrence property, then
so does (Yβ, σβ).

Proof. Let f ∈ L∞(Yβ) be such that f ≥ 0,
∫
Yβ
f = c > 0, and without loss of

generality assume that ∥f∥L∞(Yβ) ≤ 1. Since (Yβ, σβ) is the inverse limit of the
(Yα, σα), the orthogonal projections E(f | Yα) converge in L2(X) norm to E(f |
Yβ) = f . Thus, for any ε > 0, there is α < β such that

∥f − E(f | Yα)∥L2(X) ≤ ε. (11.2)

By Lemma 8.1.1,
∫
Yβ

E(f | Yα) dµYβ = c and ∥E(f | Yα)∥L∞(Yα) ≤ 1. Therefore
F := {E(f | Yα) ≥ c/2} must have measure at least c/2. Setting E := {f > 0}, we
have

|f − E(f | Yα)| ≥
c

2
1F1Ec .

Squaring this and taking conditional expectations, we obtain

E(|f − E(f | Yα)|2 | Yα) ≥
c2

4
(1− E(1E | Yα))1F . (11.3)
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Let k ≥ 1 be an integer. By Markov’s inequality1, and then applying first (11.3)
and second (11.2), we obtain

µX({(1− E(1E | Yα))1F ≥ 1/k}) ≤ k

∫
X

(1− E(1E | Yα))1F dµX

≤ 4k

c2
∥f − E(f | Yα)∥2L2(X)

≤ 4kε2

c2
.

Thus

µX({(1− E(1E | Yα))1F < 1/k}) ≥ 1− 4kε2

c2
.

Choosing ε sufficiently small depending on c, we conclude (from the lower bound
µX(F ) ≥ c/2) that

E(1E | Yα) > 1− 1/k

on a set of positive measure. The claim now follows from Lemma 11.2.1.

We have now completed the proof of Furstenberg’s multiple recurrence theorem
(Theorem 4.2.10) and, as a consequence, Szemerédi’s theorem (Theorem 4.2.6).

11.3 Classification of Compact Extensions, Part I
In Lectures 5 and 6, we defined a measure-preserving system (X, τ) to have discrete
spectrum2 if L2(X) is spanned by finite-dimensional invariant subspaces. In Exercise
6.6, we suggested that this definition is equivalent to the property that the orbit
of every element of L2(X) is precompact. This latter characterization inspired us
to formalize a relative version for extensions of measure-preserving systems within
the conditional Hilbert space L2(X | Y ) in Lecture 9. We termed such functions
conditionally almost periodic and defined an extension q : (X, τ)→ (Y, σ) of concrete
measure-preserving systems to be compact if the set of conditionally almost periodic
elements of L2(X | Y ) is dense in L2(X).

In this section, we establish that there is an analogous notion of discrete spectrum
for extensions, formulated in terms of finite rank invariant L∞(Y )-submodules of

1Markov’s inequality states that for any extended real-valued measurable function f on an
arbitrary measure space (X,µX) and any ε > 0 it holds that

µX({|f | ≥ ε}) ≤ 1

ε

∫
X

|f |dµX .

2It is also customary to call systems with discrete spectrum compact systems.
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the conditional Hilbert space L2(X | Y ). Furthermore, we show that this notion is
equivalent to the compactness of the extension.

Before delving into the details, let us recall the construction of the conditional
Hilbert space:

L2(X | Y ) = {f ∈ L2(X) : ∥E(|f |2 | Y )∥L∞(Y ) <∞},

which is equipped with the conditional norm

∥f∥X|Y = E(|f |2 | Y )1/2 ∈ L∞(Y ).

The following provides a replacement for finite-dimensional subspaces in the defini-
tion of discrete spectrum within the relative setting of extensions:

Definition 11.3.1. A set M ⊆ L2(X | Y ) is said to be conditionally orthonor-
mal if:

(i) (f | g)X|Y = 0 for all f, g ∈M with f ̸= g.

(ii) For every f ∈M , there exists a measurable set E ⊆ Y such that (f | f)X|Y =
1E.

The L∞(Y )-linear hull

H =

{ n∑
i=1

hifi | h1, . . . , hn ∈ L∞(Y )

}
of a finite conditionally orthonormal subset M = {f1, . . . , fn} ⊆ L2(X | Y ) is called
a finite rank L∞(Y )-submodule (generated by {f1, . . . , fn}).
The following orthogonal expansion for elements of finite rank submodules will be
useful at several points. The proof is left as Exercise 11.2.

Lemma 11.3.2. Let H ⊆ L2(X | Y ) be a finite rank L∞(Y )-submodule generated
by a conditionally orthonormal subset M = {f1, . . . , fn}. Then every f ∈ H can be
expressed as

f =
n∑
i=1

(f | fi)X|Y fi.

Our next major goal is to establish the following implication (the reverse implication
is left as Exercise 11.3):

Theorem 11.3.3. Let q : (X, τ)→ (Y, σ) be a compact extension of concrete measure-
preserving systems. Then the union of all invariant finite rank L∞(Y )-submodules
of L2(X | Y ) is dense in L2(X).
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The strategy to prove this theorem is to relate the assumptions to conditional
Hilbert–Schmidt operators and derive the conclusion through a spectral analysis
of these conditional operators. We start by relating the assumptions in Theorem
11.3.3 to conditional Hilbert–Schmidt operators.

Recall that X ⊗Y X denotes the product of the probability space X with itself
relative to the probability space Y (see Definition 8.4.5). For K ∈ L2(X ⊗Y X | Y ),
recall that we define the conditional kernel operator K∗Y : L2(X)→ L2(X) by

(K ∗Y f)(x) :=
∫
Y

K(x, x′)f(x′)dµq(x)(x
′).

Proposition 11.3.4. Let K ∈ L2(X ⊗Y X | Y ). The conditional kernel operator
K∗Y : L2(X)→ L2(X) is a well-defined bounded linear operator.

Proof. Suppose ∥K∥L2(X⊗YX|Y ) = C for some constant C > 0. Recall the inequality3

(9.4)
∥K ∗Y f∥X|Y ≤ ∥K∥X⊗YX|Y ∥f∥X|Y ,

which yields

∥K ∗Y f∥2L2(X) =

∫
Y

∥K ∗Y f∥2X|Y dµY

≤
∫
Y

∥K∥2X⊗YX|Y ∥f∥2X|Y dµY

≤ C2

∫
Y

∥f∥2X|Y dµY

= C2∥f∥2L2(X).

This proves the claim.

We will now argue that K∗Y : L2(X | Y ) → L2(X | Y ) is a conditional Hilbert–
Schmidt operator in the following sense:

Definition 11.3.5. A C-linear map V : L2(X | Y ) → L2(X | Y ) is said to be
conditionally Hilbert–Schmidt if it satisfies the following two properties:

(i) L∞(Y )-linearity: For all h ∈ L∞(Y ) and f ∈ L2(X | Y ),

V (Uq(h)f) = Uq(h)V (f).

(ii) Conditional Hilbert–Schmidt property: There exists C > 0 such that
for all conditionally orthonormal sets M ⊆ L2(X | Y ),∑

f∈M

∥V (f)∥2X|Y ≤ C1.

3This inequality is established for f ∈ L2(X | Y ), but one can easily check that it also holds for
f in the larger space L2(X).
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Remark 11.3.6. Remember that we assume that X is a Lebesgue space, and conse-
quently, L2(X) is separable. This separability implies that any conditional orthonor-
mal set is at most countable since such a set defines an ordinary suborthonormal
set. To see this, note that if (f | g)X|Y = 0, then by integrating both sides, it follows
that (f | g)L2(X) = 0. Similarly, (f | f)X|Y = 1E implies (f | f)L2(X) ≤ 1.

Proposition 11.3.7. Let K ∈ L2(X ⊗Y X | Y ). The conditional kernel operator
K∗Y : L2(X | Y )→ L2(X | Y ) is conditionally Hilbert–Schmidt.

Proof. L∞(Y )-linearity follows from Proposition 9.1.4(iii). Let C > 0 be such that
∥K∥X⊗YX|Y ≤ C. Let M ⊆ L2(X | Y ) be a conditionally orthonormal set. By
Theorem 8.4.3,∑

f∈M

∥K ∗Y f∥2X|Y =
∑
f∈M

∫
X

∣∣∣∣∫
X

K(x, x′)f(x′)dµq(x)(x
′)

∣∣∣∣2 dµy(x)
The measure µy is supported on the fiber q−1({y}) for almost every y, and the
measure µX ⊗Y µX on X ×X is supported on the fiber product of sets {(x1, x2) ∈
X ×X : q(x1) = q(x2)}. Thus for almost every y,

∑
f∈M

∫
X

∣∣∣∣∫
X

K(x, x′)f(x′)dµq(x)(x
′)

∣∣∣∣2 dµy(x)
=
∑
f∈M

∫
X

∣∣∣∣∫
X

K(x, x′)f(x′)dµy(x
′)

∣∣∣∣2 dµy(x)
By Remark 11.3.6, M is at most countable. Furthermore, by Theorem 8.4.3, M
is also an ordinary suborthonormal set in L2(X,µy) for almost every y. Hence by
monotone convergence and Bessel’s inequality for almost every y,∑
f∈M

∫
X

∣∣∣∣∫
X

K(x, x′)f(x′)dµy(x
′)

∣∣∣∣2 dµy(x) ≤ ∫
X×X

|K(x, x′)|2 dµy × µy(x, x′) ≤ C2.

The claim follows from another application of Theorem 8.4.3.

The following result forms the first step in our strategy to relate the compactness of
an extension to the range of certain conditional Hilbert–Schmidt operators:

Proposition 11.3.8. Let q : (X, τ) → (Y, σ) be a compact extension of concrete
measure-preserving systems. Then

M = {K ∗Y f : K ∈ fix(Uτ×τ ) ∩ L2(X ⊗Y X | Y ), f ∈ L2(X | Y )}

spans a dense linear subspace of L2(X).
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We use the following lemma.

Lemma 11.3.9. Let q : (X, τ)→ (Y, σ) be a compact extension of concrete measure-
preserving systems and f ∈ L2(X | Y ). For each ε > 0 and δ > 0 there are finitely
many g1, . . . , gn ∈ L2(X | Y ) such that for each γ ∈ Γ there is some Aγ ∈ Σ(Y ) with
µY (Aγ) ≥ 1− δ and

1Aγ inf
1≤i≤n

∥Uτγf − gi∥X|Y ≤ ε1. (11.4)

Proof. Take ε > 0 and δ > 0. Since, by the definition of compact extensions, the
conditionally almost periodic elements in L2(X|Y ) are dense in L2(X), we can find
some conditionally almost periodic g ∈ L2(X | Y ) with ∥f − g∥L2(X) ≤ ε

√
δ

2
and set

B :=

{
y ∈ Y : ∥f − g∥X|Y (y) ≤

ε

2

}
∈ Σ(Y ).

Using that ∥f − g∥2L2(X) =
∫
Y
∥f − g∥2X|Y , one can readily check that µY (B) ≥

1 − δ. Using that g ∈ L2(X | Y ) is conditionally almost periodic, we further find
g1, . . . , gn ∈ L2(X | Y ) for some n ∈ N such that

inf
1≤i≤n

∥Uτγ (g)− gi∥X|Y ≤
ε

2
1

for each γ ∈ Γ.

Then Aγ := σ−1
γ (B) ∈ Σ(Y ) satisfies µY (Aγ) = µY (B) ≥ 1−δ. Moreover, for almost

every y ∈ Aγ we have that

∥Uτγf − Uτγg∥X|Y (y) = ∥f − g∥X|Y (σγ(y)) ≤
ε

2
,

hence

inf
i=1,...,n

∥Uτγf − gi∥X|Y (y) ≤ ∥Uτγf − Uτγg∥X|Y (y) + inf
i=1,...,n

∥Uτγg − gi∥X|Y (y)

≤ ε

2
+
ε

2
= ε.

Proof of Proposition 11.3.8. It suffices to show that M⊥ = {0}. For f ∈ M⊥ we
observe that also 1[∥f∥X|Y ≤n]f ∈ M⊥ for each n ∈ N (in fact, M⊥ is a L∞(Y )-
submodule of L2(X)). By approximation we therefore only need to consider the
case f ∈ L2(X | Y ).

Let f ∈M⊥∩L2(X | Y ) and consider f⊙ f̄ ∈ L2(X⊗Y X | Y ). Let K be the unique
element of minimal L2(X⊗Y X)-norm in the closed convex hull of the orbit of f ⊙ f̄
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as guaranteed by the abstract ergodic theorem (see Theorem 3.1.5). Then K is an
invariant element of L2(X ⊗Y X|Y ), and thus, by assumption, f is orthogonal to
K ∗Y f . By Theorem 8.4.3,

0 = (f | K ∗Y f)L2(X) =

∫
X

f(x)

∫
X

K(x, x′)f(x′)dµq(x)(x
′) dµX(x)

=

∫
Y

∫
X×X

K(x, x′)f(x)f(x′)d(µy × µy)(x, x′) dµY (y)

= (K | f ⊙ f̄)L2(X⊗YX).

Thus, f⊙f̄ is orthogonal to K, and since K is invariant, we conclude that Uτγ×τγ (f⊙
f̄) is orthogonal to K for every γ ∈ Γ. Hence, K is orthogonal to itself, and therefore
K = 0. We therefore find a sequence (Km) in the convex hull of the orbit of f ⊙ f̄
such that ∥Km∥L2(X⊗YX) → 0.

Now let g1, . . . , gn ∈ L2(X | Y ) be chosen as in Lemma 11.3.9. By the Cauchy–
Schwarz inequality,

n∑
i=1

(Km | gi ⊙ ḡi)L2(X⊗YX) → 0.

For a given m, writing Km as a convex combination

Km =
lm∑
j=1

λj,mUτγj,m×τγj,m (f ⊙ f̄),

and applying Proposition 8.4.6, we obtain

n∑
i=1

(Km | gi ⊙ ḡi)L2(X⊗YX) =
n∑
i=1

lm∑
j=1

λj,m

∫
Y

E(Uτγj,m (f)gi | Y )E(Uτγj,m (f)gi | Y ) dµY

=
lm∑
j=1

λj,m

(
n∑
i=1

∥(Uτγj,m (f) | gi)X|Y ∥2L2(Y )

)
.

Since the latter convex combination converges to zero, we can always find γ ∈ Γ
such that

n∑
i=1

∥(Uτγ (f) | gi)X|Y ∥2L2(Y )

is arbitrarily small. Thus for any ε > 0 and δ > 0 there is A ∈ Σ(Y ) with µY (A) ≥
1− δ

2
and γ ∈ Γ such that, for all 1 ≤ i ≤ n,

|(Uτγ (f) | gi)X|Y |1A ≤ ε1. (11.5)
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For this γ ∈ Γ we then find, by the choice of g1, . . . , gn via Lemma 11.3.9, some
Aγ ∈ Σ(Y ) with µY (Aγ) ≥ 1− δ

2
such that

1Aγ inf
1≤i≤n

∥Uτγf − gi∥X|Y ≤ ε1. (11.6)

Meanwhile, using the conditional Pythagorean identity in Proposition 9.1.4, for all
1 ≤ i ≤ n,

∥Uτγ (f)− gi∥2X|Y = ∥Uτγ (f)∥2X|Y − 2Re (Uτγ (f) | gi)X|Y + ∥gi∥2X|Y ,

and thus,
∥Uτγ (f)∥2X|Y ≤ ∥Uτγ (f)− gi∥2X|Y + 2Re (Uτγ (f) | gi)X|Y .

By combining this inequality with (11.5), we obtain with B := A ∩Aγ ∈ Σ(Y ) that

∥Uτγ (f)∥2X|Y 1B ≤ ∥Uτγ (f)− gi∥2X|Y 1B + 2ε1B.

for all 1 ≤ i ≤ n. Taking the infimum over 1 ≤ i ≤ n, the right-hand side of the
last inequality is smaller than (ε2 + 2ε)1B due to (11.4). For C := σγ(B) ∈ Σ(Y )
we thus have

Uσγ (∥f∥2X|Y 1C) = ∥Uτγ (f)∥2X|Y 1B ≤ (ε2 + 2ε)1B = Uσγ ((ε
2 + 2ε)1C),

which implies ∥f∥2X|Y 1C ≤ (ε2 + 2ε)1. Since µY (C) = µY (B) ≥ 1− δ and ε > 0 as
well as δ > 0 can be chosen arbitrarily small, we conclude that f = 0.

By Lemma 11.3.8, to establish Theorem 11.3.3, it suffices to show that the span of
the union of invariant finite rank L∞(Y )-submodules in the range of any conditional
kernel operator K ∈ fix(Uτ×τ ) ∩ L2(X ⊗Y X | Y ) is L2(X)-dense in the range of
K. This will be achieved through a conditional spectral analysis of conditional
Hilbert–Schmidt operators in the next lecture.
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11.4 Comments and Further Reading
Our proofs of the preservation of the multiple recurrence property under weakly
mixing extensions and under taking inverse limits are based on Tao’s treatment
in [Tao09]. For the original argument by Furstenberg, see [Fur77], or refer to his
comprehensive textbook treatment in [Fur14].

In the “Comments and Further Reading” section of the next lecture, we will provide
an extended discussion of the background and literature regarding the classification
of compact extensions.
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11.5 Exercises
Exercise 11.1. Deduce Theorem 11.1.1 from Proposition 11.1.2.

Exercise 11.2. Prove Lemma 11.3.2.

Exercise 11.3. Let q : (X, τ)→ (Y, σ) be an extension of concrete measure-preserving
systems, and suppose that the union of invariant finite rank L∞(Y )-submodules of
L2(X | Y ) is dense in L2(X). Show that q : (X, τ) → (Y, σ) is a compact extension
in the sense of Definition 9.1.5.

Exercise 11.4. Let q1 : (X1, τ1) → (Y, σ) and q2 : (X2, τ2) → (Y, σ) be compact
extensions of concrete measure-preserving systems. Show that p : (X1 ⊗Y X2, τ1 ×
τ2)→ (Y, σ) is a compact extension.

Exercise 11.5. Show that an extension q : (X, τ) → (Y, σ) of concrete measure-
preserving systems is weakly mixing if and only if the extension p : (X ⊗Y X, τ ×
τ) → (Y, σ) of concrete measure-preserving systems is ergodic in the sense that
fix(Uτ×τ ) = Up(fix(Uσ)). In particular, if (Y, σ) is an ergodic system, then an exten-
sion q : (X, τ)→ (Y, σ) is weakly mixing if and only if the system (X ⊗Y X, τ × τ)
is ergodic.



Lecture 12

In this lecture, we complete the proof of Theorem 11.3.3 through a spectral anal-
ysis of conditional Hilbert–Schmidt operators. Additionally, we establish a geo-
metric classification of compact extensions due to Mackey and Zimmer, extending
the Halmos–von Neumann representation theorem (Theorem 6.2.6) from discrete
spectrum systems to compact extensions of measure-preserving systems.

12.1 Classification of Compact Extensions, Part II

To finish the proof of Theorem 11.3.3, we first examine finite rank L∞(Y )-submodules
in greater detail through the following lemmas, starting with a basic observation.

Lemma 12.1.1. If H ⊆ L2(X | Y ) is a finite rank L∞(Y )-submodule, then H is
closed in L2(X | Y ) with respect to the L2(X)-norm.

Proof. Assume that H is generated by the finite conditionally orthonormal subset
M = {f1, . . . , fn} ⊆ L2(X | Y ). Let (gm)m∈N be a sequence in H converging to
g ∈ L2(X | Y ) with respect to the L2(X)-norm. By passing to a subsequence,
we may assume that the convergence holds almost surely and that there exists
h ∈ L2(X) such that |gm| ≤ h for all m ∈ N.

By Lemma 11.3.2, we can write gm =
∑n

i=1(gm | fi)X|Y fi for every m ∈ N. Using
the conditional Cauchy–Schwarz inequality, we obtain

|(gm | fi)X|Y − (g | fi)X|Y |2 ≤ ∥gm − g∥2X|Y = E(|gm − g|2 | Y ),

for each m ∈ N and i ∈ {1, . . . , n}.
Since (gm)m∈N converges to g almost surely and |gm| ≤ h for all m ∈ N for some
h ∈ L2(X), we conclude that E(|gm − g|2 | Y ) → 0 almost surely as m → ∞ by
Lemma 8.1.1. Therefore, (gm | fi)X|Y → (g | fi)X|Y almost surely for each i.

173
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Substituting back, we see that

g = lim
m→∞

gm = lim
m→∞

n∑
i=1

(gm | fi)X|Y fi =
n∑
i=1

(g | fi)X|Y fi,

which implies g ∈ H. Thus, H is closed in L2(X | Y ) with respect to the L2(X)-
norm.

We now aim to identify a condition that provides a converse to Lemma 12.1.1:
Under what circumstances is an L∞(Y )-submodule H ⊆ L2(X | Y ), which is closed
in L2(X | Y ) with respect to the L2(X)-norm, of finite rank?

Before we answer this question, we need to “normalize” elements with respect to
their conditional norm.

Proposition and Definition 12.1.2. Let f ∈ L2(X | Y ). Then the equivalence
class f/∥f∥X|Y of measurable functions defined by

(f/∥f∥X|Y )(x) :=

{
f(x)

∥f∥X|Y (q(x))
if x ∈ q−1({∥f∥X|Y ̸= 0})

0 else

is an element of L2(X | Y ), and called the conditional normalization of f .
Moreover,

(i) f/∥f∥X|Y = limn→∞
1

∥f∥X|Y + 1
n
1
· f in L2(X)-norm,

(ii) ∥f/∥f∥X|Y ∥X|Y = 1{∥f∥X|Y ̸=0}, and

(iii) ∥f∥X|Y · f/∥f∥X|Y = f .

Proof. Set fn := 1
∥f∥X|Y + 1

n
1
· f and gn := ∥fn∥X|Y =

∥f∥X|Y
∥f∥X|Y + 1

n
1

for n ∈ N. Clearly,
limn→∞ gn = 1{∥f∥X|Y ̸=0} almost surely and then also in L2(Y ). A short computation
reveals that

∥fn − fm∥2L2(X) =

∫
Y

∥fn − fm∥2X|Y =

∫
Y

|gn − gm|2 = ∥gn − gm∥2L2(Y )

for n,m ∈ N. Thus, (fn)n∈N is a Cauchy sequence in L2(X), hence converges to
some h ∈ L2(X). Since f = 1{∥f∥X|Y ̸=0}f , we obtain that

f/∥f∥X|Y = lim
n→∞

1

∥f∥X|Y + 1
n
1
1{∥f∥X|Y ̸=0} · f = lim

n→∞

1

∥f∥X|Y + 1
n
1
· f

almost surely. This implies h = f/∥f∥X|Y by passing to an almost surely convergent
subsequence of (fn)n∈N. Moreover, one can check that ∥h∥X|Y = limn→∞ ∥fn∥X|Y in
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L2(Y ), hence ∥h∥X|Y = 1{∥f∥X|Y ̸=0}, in particular h ∈ L2(X | Y ). Finally, we obtain
that

∥f∥X|Y · f/∥f∥X|Y = lim
n→∞

∥f∥X|Y

∥f∥X|Y + 1
n
1
· f = 1{∥f∥X|Y ̸=0}f.

The following lemma now ensures the existence of elements f ∈ H in such submod-
ules that maximize the support of the conditional norm ∥f∥X|Y in Y .

Lemma 12.1.3. Assume that H ⊆ L2(X | Y ) is an L∞(Y )-submodule that is closed
in L2(X | Y ) with respect to the L2(X)-norm. Then there exist B∗ ∈ Σ(Y ) and
f ∈ H such that ∥f∥X|Y = 1B∗ and 1B∗g = g for every g ∈ H. In particular, for
every g ∈ H, we have µY ({∥g∥X|Y ̸= 0} \B∗) = 0.

Proof. Define

B = {B ∈ Σ(Y ) : ∃f ∈ H such that ∥f∥X|Y = 1B}.

By the completeness and countable chain condition of the measure algebra Σ(Y )
(see Exercise 1.6(vi)), the set B∗ =

⋃
B exists in Σ(Y ), and there is a countable

family (B̃n) in B such that B∗ =
⋃
n B̃n. Define B1 = B̃1 and Bn = B̃n \

⋃
i<n B̃i

for all n ≥ 2. Then the family (Bn) forms a partition of B∗, and one can directly
verify that Bn ∈ B for all n. Let fn ∈ H satisfy ∥fn∥X|Y = 1Bn .

Form f =
∑

n fn1Bn = limN→∞
∑

n≤N fn1Bn almost surely. By Lemma 8.1.1, we
have

∥f∥X|Y =

∥∥∥∥∥∑
n

fn1Bn

∥∥∥∥∥
X|Y

=
∑
n

∥fn∥X|Y 1Bn = 1B∗ .

Thus, B∗ ∈ B is attained. The claim follows from the maximality of B∗ and using
normalization of elements f ∈ H.

We now obtain the following partial converse to Lemma 12.1.1.

Lemma 12.1.4. Let H ⊆ L2(X | Y ) be an L∞(Y )-submodule satisfying the following
two properties:

(i) H is closed in L2(X | Y ) with respect to the L2(X)-norm.

(ii) There exists a constant C > 0 such that
∑

f∈M ∥f∥2X|Y ≤ C1 for every condi-
tionally orthonormal subset M ⊆ H.

Then H is a finite rank L∞(Y )-submodule.

Proof. Let n be the largest integer such that n ≤ C. We recursively construct
f1, . . . , fn+1 ∈ H and B1, . . . , Bn+1 ∈ Σ(Y ) as follows: Assume for some m ∈
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{1, . . . , n + 1} that f1, . . . , fm−1 and B1, . . . , Bm−1 ∈ Σ(Y ) have already been con-
structed. Then, define

Hm := {f ∈ H : (f | fi)X|Y = 0 for every i ∈ {1, . . . ,m− 1}}.

This is a closed L∞(Y )-submodule of L2(X | Y ) with respect to the L2(X)-norm.
By Lemma 12.1.3, we can pick fm ∈ Hm and Bm ∈ Σ(Y ) such that ∥fm∥X|Y = 1Bm

and 1Bmg = g for every g ∈ Hm.

By construction, {f1, . . . , fn+1} is a conditionally orthonormal subset with ∥fj∥X|Y =
1Bj
≤ 1Bi

= ∥fi∥X|Y for i ≤ j. Since

n+1∑
i=1

∥fi∥2X|Y ≤ C < n+ 1,

we must have ∥fn+1∥X|Y = 0, hence fn+1 = 0. By the choice of fn+1, it follows that
f = 0 for every f ∈ H that is conditionally orthogonal to f1, . . . , fn.

Now let K be the finite rank L∞(Y )-submodule generated by {f1, . . . , fn}. Clearly,
K ⊆ H. To finish the argument, consider the closure H in L2(X). We claim that K
is dense in H, i.e., K = H. Then, by Lemma 12.1.1,

K = K ∩ L2(X | Y ) = H ∩ L2(X | Y ) = H

as desired.

To check the claim take g ∈ H that is orthogonal in the classical sense to K in the
Hilbert space L2(X) and show g = 0. Since H is a L∞(Y )-submodule of L2(X), we
obtain that gn := 1{∥g∥X|Y ≤n}g ∈ H∩ L2(X | Y ) = H for each n ∈ N. If f ∈ K, then
for each h ∈ L∞(Y ), we have∫

Y

h(f | gn)X|Y = (h1[∥g∥X|Y ≤n]f | g)L2(X) = 0,

since K is an L∞(Y )-submodule. This implies (f | gn)X|Y = 0 in L∞(Y ), i.e., gn is
conditionally orthogonal to K for each n ∈ N. Thus, gn = 0 for every n ∈ N, and
since g = limn→∞ gn in L2(X), also g = 0.

Finally, we also need the following observation, which allows to turn finitely gener-
ated submodules into finite rank submodules.

Lemma 12.1.5. Let H ⊆ L2(X | Y ) be an L∞(Y )-submodule which is finitely gener-
ated, that is, there exist f1, . . . , fn ∈ H such that each f ∈ H admits a representation
f =

∑n
i=1 gifi for some g1, . . . , gn ∈ L∞(Y ). If H denotes the closure in L2(X), then

H ∩ L2(X | Y ) is a finite rank L∞(Y )-submodule.
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Proof. Note first that if f ∈ H, then f/∥f∥X|Y ∈ H∩L2(X | Y ) by Proposition 12.1.2
(i). We now use the Gram–Schmidt process to recursively define

e′i := fi −
i−1∑
j=1

(fi|ej)X|Y ej ∈ H ∩ L2(X | Y ) and

ei := e′i/∥e′i∥X|Y ∈ H ∩ L2(X | Y )

for every i ∈ {1, . . . , n}. By Proposition 12.1.2 (ii) this gives us a conditionally
orthonormal set {e1, . . . , en} ⊆ H ∩ L2(X | Y ). Let K be the generated finite rank
L∞(Y )-submodule. Then K ⊆ H ∩ L2(X | Y ). On the other hand, by Proposition
12.1.2 (iii) we have

fi =
i−1∑
j=1

(fi|ej)X|Y ej + ∥e′i∥X|Y ei ∈ K

for each i ∈ {1, . . . , n}. Therefore, H ⊆ K, and by Lemma 12.1.1 this implies
H ∩ L2(X | Y ) ⊆ K.

We will need the following corollary in a dynamical situation.

Corollary 12.1.6. Let p : (X, τ) → (Y, σ) be an extension of concrete measure-
preserving systems over Γ, with (Y, σ) ergodic. Suppose that H is a Γ-invariant,
finitely generated L∞(Y )-submodule of L2(X | Y ), closed with respect to the L2(X)-
norm, and that H ̸= {0}.
Then H admits a conditionally orthonormal basis M , in the sense that (f | g)X|Y = 0
for all f, g ∈ M with f ̸= g, and (f | f)X|Y = 1Y for all f ∈ M . In particular,
Uγ
τ (M) is also a conditionally orthonormal basis of H for all γ ∈ Γ.

Proof. Let B∗ be as in the proof of Lemma 12.1.3. For γ ∈ Γ and g ∈ H, we have

1B∗Uγ
τ (1B∗g) = 1B∗1τγ−1 (B∗)U

γ
τ (g) = 1τγ−1 (B∗)U

γ
τ (g).

This implies that 1τγ−1 (B∗)g = g for all g ∈ H. By the maximality of B∗, this implies
that µY (τγ−1(B∗)∆B∗) = 0 for all γ ∈ Γ. By ergodicity and since B∗ must have
positive measure because H ̸= {0}, µY (B∗) = 1. All the claims can now be deduced
from the proofs of Lemma 12.1.4 and Lemma 12.1.5.

Lemma 12.1.5 has the following important consequence.

Lemma 12.1.7. IfH1,H2 ⊆ L2(X | Y ) are invariant finite rank L∞(Y )-submodules,
then there is an invariant finite rank submodule H ⊆ L2(X | Y ) with H1 +H2 ⊆ H.

Proof. Apply Lemma 12.1.5 to the invariant and finitely generated L∞(Y )-submodule
H1 +H2 ⊆ L2(X | Y ).
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We now finish the proof of Theorem 11.3.3:

Proof of Theorem 11.3.3. In view of Lemma 12.1.7 and Proposition 11.3.8 it suffices
to show that the ranges of K∗Y where K ∈ fix(Uτ×τ )∩L2(X⊗Y X | Y ) are contained
in the closed linear hull of the union of all invariant finite rank L∞(Y )-submodules
of L2(X | Y ).

Let K ∈ fix(Uτ×τ ) ∩ L2(X ⊗Y X | Y ). By decomposing

K(x, y) =
K(x, y) +K(y, x)

2
+ i

K(x, y)−K(y, x)

2i
for (x, y) ∈ X ⊗Y X,

we may reduce to the case that thatK(x, y) = K(y, x) for almost all (x, y) ∈ X⊗YX.

By Proposition 11.3.4, K∗Y : L2(X) → L2(X) is a bounded operator and, since
K(x, y) = K(y, x) for almost all (x, y) ∈ X ⊗Y X, it is self-adjoint. For ε > 0,
consider the spectral projections

P+
ε := 1[ε,∥K∗Y ∥](K∗Y ) and P−

ε := 1[−∥K∗Y ∥,−ε](K∗Y ).

For a collection of facts about spectral projections, see Appendix A.3. In particular,
we have

P+
ε ◦ (K∗Y ) = (K∗Y ) ◦ P+

ε ≥ εP+
ε , (12.1)

P−
ε ◦ (K∗Y ) = (K∗Y ) ◦ P−

ε ≤ −εP−
ε , (12.2)

where the inequalities mean that

(K ∗Y P+
ε f | P+

ε f)L2(X) ≥ ε(P+
ε f | P+

ε f)L2(X) and
(K ∗Y P−

ε f | P−
ε f)L2(X) ≤ −ε(P−

ε f | P−
ε f)L2(X)

for all f ∈ L2(X).

Since P±
ε arises as a limit of polynomials in K∗Y in the strong operator topology,

P±
ε is Γ-equivariant, i.e., UτγP±

ε = P±
ε Uτγ for every γ ∈ Γ. Additionally, P±

ε is
L∞(Y )-linear since L∞(Y )-linearity is preserved when passing to strong operator
limits. We further show that for f ∈ L2(X) we have ∥P±

ε f∥X|Y ≤ ∥f∥X|Y .

For

E := {y ∈ Y : ∥P±
ε f∥X|Y (y) > ∥f∥X|Y (y)} ∈ Σ(Y )

consider g := (Uq1E) · f ∈ L2(X). Since P±
ε is an orthogonal projection, we obtain

∥P±
ε g∥2L2(X) ≤ ∥g∥2L2(X). On the other hand, since P±

ε is L∞(Y )-linear, we obtain

0 ≤ ∥g∥2L2(X) − ∥P±
ε g∥2L2(X) =

∫
Y

∥g∥2X|Y − ∥P±
ε g∥2X|Y dµY

=

∫
Y

1E(∥f∥2X|Y − ∥P±
ε f∥2X|Y ) dµY ≤ 0.
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This implies 1E(∥f∥2X|Y − ∥P±
ε f∥2X|Y ) = 0, and consequently µY (E) = 0. Thus,

∥P±
ε f∥X|Y ≤ ∥f∥X|Y as desired.

We claim that the images H±
ε := P±

ε (L
2(X | Y )) are invariant finite rank L∞(Y )-

submodules of L2(X | Y ). By what we have just shown, we indeed have that
H±
ε ⊆ L2(X | Y ). Since P±

ε is L∞(Y )-linear and equivariant, it follows that H±
ε is

an invariant L∞(Y )-submodule of L2(X | Y ).

We now show that it has finite rank. By Properties (12.1) and (12.2), we obtain

|(K ∗Y f | f)L2(X)| ≥ ε(f | f)L2(X)

for all f ∈ H±
ε . Using a similar argument as above, we even obtain

|(K ∗Y f | f)X|Y | ≥ ε(f | f)X|Y

for each f ∈ H±
ε . By the conditional Cauchy–Schwarz inequality we thus have

∥K ∗Y f∥X|Y · ∥f∥X|Y ≥ ε∥f∥2X|Y

and this implies ∥f∥X|Y ≤ 1
ε
∥K ∗Y f∥X|Y for f ∈ H±

ε . Using that K∗Y : L2(X |
Y )→ L2(X | Y ) is a conditional Hilbert–Schmidt operator (see Proposition 11.3.7),
we find C > 0 such that ∑

f∈M

∥K ∗Y f∥2X|Y ≤ C

for every conditionally orthonormal subset M ⊆ L2(X | Y ). In particular, if M ⊆
H±
ε is a conditionally orthonormal subset of H±

ε , then∑
f∈M

∥f∥2X|Y ≤
1

ε

∑
f∈M

∥K ∗Y f∥2X|Y ≤
C

ε
.

Applying Lemma 12.1.4 we obtain that the L∞(Y )-submodulesH±
ε are of finite rank.

To conclude the proof notice that, sinceK∗Y : L2(X)→ L2(X) is a bounded operator
and L2(X | Y ) is dense in L2(X), the image K ∗Y (L2(X | Y )) is dense in K ∗Y
(L2(X)). Now if f ∈ L2(X | Y ) we obtain by the properties of spectral projections
that

K ∗Y f = lim
n→∞

(P+
1
n

(K ∗Y f) + P−
1
n

(K ∗Y f)).

Therefore, the image of K∗Y is contained in the L2(X)-closure of the the union
of all invariant finite rank L∞(Y )-submodules. In view of Proposition 11.3.8, this
concludes the proof of the theorem.
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12.2 Classification of Compact Extensions, Part III
In this section, we establish an analogue of the Halmos–von Neumann representation
theorem (Theorem 6.2.6) for compact extensions. To this end, we introduce the
following definition of measurable cocycles (cf. the definition of continuous cocycles
in Definition 7.2.4).

Definition 12.2.1. Let (Y, σ) be a concrete measure-preserving system, and let
K = (K, ·) be a compact metrizable group (not necessarily abelian), equipped with
the Borel σ-algebra. A measurable1 function ρ : Γ× Y → K is said to be a cocycle
if the identity

ρ(γ1 + γ2, y) = ρ(γ1, σγ2(y)) · ρ(γ2, y) = ρ(γ2, σγ1(y)) · ρ(γ1, y)

holds for almost every y ∈ Y and every pair γ1, γ2 ∈ Γ.2

Two cocycles ρ1 and ρ2 are called cohomologous if there exists a measurable map
U : Y → K such that

ρ1(γ, y) = U(σγ(y)) · ρ2(γ, y) · U(y)−1

for almost every y and every γ ∈ Γ.

Proposition and Definition 12.2.2. Let (Y, σ) be a concrete measure-preserving
system, let K be a compact metrizable group, let L ⊆ K be a closed subgroup, and
let ρ : Γ × Y → K be a cocycle. We define the homogeneous skew-product
extension Y ⋊ρ K/L = (X, τ) by the following data:

(i) The product set X := Y ×K/L;

(ii) The product σ-algebra ΣY ⊗ΣK/L, where ΣK/L is the Borel σ-algebra on K/L;

(iii) The product probability measure µY ⊗mK/L, where mK/L is the Haar measure
on K/L (see Definition 6.1.3 and Remark 6.1.4);

(iv) The action τγ(y, kL) = (σγ(y), (ρ(γ, y) · k)L), defined for every γ ∈ Γ, almost
every y ∈ Y , and every kL ∈ K/L.

Then (X, τ) is a concrete measure-preserving system, and the Y -coordinate projec-
tion defines a factor map p : (X, τ)→ (Y, σ).

A homogeneous skew-product system is called a group skew-product extension
if L is the trivial subgroup of K.

1Since Γ is a countable discrete (abelian) group, it is naturally equipped with the power set
algebra. Thus, the measurability requirement is equivalent to the condition that the map ρ(γ, ·) is
measurable from Y to K for each γ ∈ Γ.

2Since Γ is assumed to be a countable group, the order of the quantifiers for y and γ1, γ2 does
not matter.
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Moreover, suppose that ρ1, ρ2 are cohomologous cocycles, then the respective homoge-
neous skew-product extensions Y ⋊ρ1K/L and Y ⋊ρ2K/L are isomorphic extensions
in the sense that there is an isomorphism q : Y ⋊ρ1 K/L→ Y ⋊ρ2 K/L in the sense
of Definition 1.1.5 such that p2 ◦ q = p1 where pi : Y ⋊ρi K/L → (Y, σ) are the
Y -coordinate projections for i = 1, 2.

Proof. Exercise.

In Exercise 9.5, we showed that in the case where Γ = Z, a homogeneous skew-
product extension is a compact extension. The same proof generalizes to show that
this conclusion holds for any homogeneous skew-product extension with respect to
an arbitrary countable abelian group Γ. In this section, we prove the converse
statement for general countable abelian groups under the additional assumption of
ergodicity:

Theorem 12.2.3 (Mackey–Zimmer). Let p : (X, τ)→ (Y, σ) be a compact extension
of concrete measure-preserving systems such that (X, τ) (and therefore also (Y, σ))
is ergodic. Then there exist a compact metrizable group K, a closed subgroup L ⊆ K,
and a cocycle ρ : Γ × Y → K such that the homogeneous skew-product Y ⋊ρ K/L
and (X, τ) are isomorphic extensions of (Y, σ).

The proof of Theorem 12.2.3 relies on the characterization of compact extensions
through invariant finite rank L∞(Y )-submodules in Theorem 11.3.3 and a technical,
non-trivial result, commonly referred to as the Mackey–Zimmer theorem as well. We
now pause to state this result before returning to the proof of Theorem 12.2.3.

Definition 12.2.4. An extension p : (X, τ)→ (Y, σ) of concrete measure-preserving
systems is called homogeneous if there are a compact metrizable group K, a closed
subgroup L ⊆ K, a cocycle ρ : Γ × Y → K, and a measurable map θ : X → K/L
such that:

(i) X = Y ×K/L is equipped with the product σ-algebra ΣY ⊗ ΣK/L;

(ii) (θ ◦ τγ)(x) = (ργ ◦ p)(x) · θ(x) for almost every x ∈ X and all γ ∈ Γ.

A homogeneous extension is called a group extension if L is the trivial subgroup
of K.

By possibly changing the homogeneous space K/L and considering a cohomologous
cocycle, a homogeneous extension of ergodic systems is isomorphic to a homogeneous
skew-product extension:

Lemma 12.2.5 (Mackey–Zimmer). Let p : (X, τ)→ (Y, σ) be a homogeneous exten-
sion by the data (K/L, ρ, θ) of ergodic concrete measure-preserving systems. Then
there exist a closed subgroup H ⊆ K, a closed subgroup M ⊆ H, and a cocycle
ρ̃ : Γ×Y → H that is cohomologous to ρ (when viewed as a K-valued cocycle), such
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that p : (X, τ)→ (Y, σ) and p̃ : Y ⋊ρ̃ H/M → (Y, σ) are isomorphic extensions.

A proof of Lemma 12.2.5 can be found in the next section at the end of this lecture.
Here we prove Theorem 12.2.3 with it:

Proof. From Theorem 11.3.3 we know that the invariant finite rank L∞(Y )-submodules
of L2(X | Y ) are dense in L2(X).

Let M ≠ {0} be such an invariant finite rank L∞(Y )-submodule of L2(X | Y ),
generated by a conditionally orthonormal basis {f1, . . . , fn} as in Corollary 12.1.6.

For every γ ∈ Γ and 1 ≤ i ≤ n, we have for almost every x,

Uτγ (fi)(x) =
n∑
j=1

λi,j(γ, q(x))fj(x),

for some suitable λi,j(γ, ·) ∈ L∞(Y ). Define the following:

θ(x) :=
1√
n
(f1(x), . . . , fn(x)) for almost every x,

Λ(γ, y) := (λi,j(γ, y))1≤i,j≤n for almost every y.

Then θ can be viewed as an element of the measurable maps from X to the sphere
S2n−1 = {z ∈ Cn : ∥z∥2 = 1} (modulo almost everywhere equality in x), which we
identify3 with the homogeneous space U(n)/U(n − 1), where U(n) is the group of
unitary n × n matrices. For almost every y and each γ ∈ Γ, the matrix Λ(γ, y)
represents an orthonormal basis change in Cn (by Corollary 12.1.6), and thus is an
element of U(n). One can then verify that the function Λ: Γ × Y → U(n) is a
cocycle.

LetMk be a sequence of invariant finite rank L∞(Y )-submodules of L2(X | Y ), such
that the closure of their union is dense in L2(X). For each Mk, we are given the
homogeneous space U(nk)/U(nk − 1), the cocycle Λk, and the measurable function
θk : X → U(nk) as described above.

Define K :=
∏

k U(nk) and L :=
∏

k U(nk − 1). Consider the homogeneous space
K/L, the cocycle Λ := (Λk)k, and the measurable function θ : X → K/L defined by
θ = (θk)k.

Let π : X → Y × K/L be the measurable map defined by π(x) := (p(x), θ(x)) for
almost every x. Consider the pushforward measure π∗µX and the cocycle action
induced by τΛ on Y × K/L. Then (Y × K/L, τΛ) is a homogeneous extension of
(Y, σ).

3The unitary group U(n) acts transitively on the sphere S2n−1, and the subgroup U(n − 1),
embedded inside U(n), stabilizes the north pole (1, 0, 0, . . . , 0). By the Orbit-Stabilizer Theorem,
we have the identification S2n−1 ∼= U(n)/U(n− 1).
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We claim that π : (X, τ)→ (Y ×K/L, τΛ) is an isomorphism of measure-preserving
systems. To prove this, we first show that

⋃
kMk ⊆ Uπ(L

2(Y ×K/L)).
Viewing L2(Y ) as a subspace of L2(Y×K/L), we observe that Uπ(L2(Y )) = Up(L

2(Y )).
Therefore, it suffices to show that for every k and every conditional orthonormal ba-
sis element f ∈ Mk, there exists g ∈ L2(Y × K/L) such that Uπ(g) = f . To
construct such a g, we can choose g as the corresponding coordinate projection from
K/L to C.

Furthermore, the relationship θ ◦ τγ = (Λγ ◦ p) · θ holds almost surely for all γ ∈ Γ.
Thus, π defines an isomorphism of measure-preserving systems, proving the claim.

Theorem 12.2.3 now follows directly from Lemma 12.2.5.

12.3 Proof of Lemma 12.2.5

Lemma 12.2.5 follows from the following proposition (this deduction is left as an
exercise).

Proposition 12.3.1. Let p : (X, τ)→ (Y, σ) be a group extension of ergodic concrete
measure-preserving systems given by the data (K, ρ, θ). Then there exist a closed
subgroup H ⊆ K and an H-valued cocycle ρ̃ that is cohomologous to ρ (when viewed
as a K-valued cocycle), such that p : (X, τ) → (Y, σ) and p̃ : Y ⋊ρ̃ H → (Y, σ) are
isomorphic extensions.

We need the following three auxiliary results. In the following proposition, for
Hilbert spaces H1 ⊆ H2 ⊆ H, we denote by H2⊖H1 the orthogonal complement of
H1 within H2.

Proposition 12.3.2. Let p : (X, τ) → (Y, σ) be an extension of concrete measure-
preserving systems. Identify the spaces L2(Y ), L2(Yinv), and L2(Xinv), where Xinv

and Yinv denote the invariant factors of (X, τ) and (Y, σ) (see Example 2.2.8), with
their respective subspaces of L2(X). Then, the subspaces

L2(Y )⊖ L2(Yinv) and L2(Xinv)

of L2(X) are orthogonal.

Proof. Exercise.

The following result is a special case of Proposition 12.3.1.

Proposition 12.3.3. Let K be a compact metrizable group. Then K acts on itself by
translations from the right preserving the Haar measure mK. Denote this concrete
measure-preserving system by (K, τ). Let p : (K, τ) → (Y, σ) be a factor map of
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concrete measure-preserving K-systems. Then there exists a closed subgroup H of
K such that (Y, σ) is isomorphic to (H\K, τ).

Proof. Using Lemma 4.1.7, one can show that A = C(K) ∩ Up(L2(Y )) is dense in
Up(L

2(Y )). Let H be the set of all elements h ∈ K such that f(gh) = f(g) for
all g ∈ K and for all f ∈ A. Then H is a closed subgroup of K, and A may
be identified with a subalgebra of C(H\K). By construction, A separates points
in H\K, and is thus by Theorem 6.1.18 dense in C(H\K). The claim follows by
applying Proposition 2.2.15, Proposition 2.2.13, and Corollary 1.3.9.

Finally, the following criterion allows us to determine when a homogeneous extension
is a homogeneous skew-product extension:

Proposition 12.3.4. Let p : (X, τ) → (Y, σ) be a homogeneous extension given by
the data (K/L, ρ, θ). Suppose that∫

X

Up(f) · g ◦ θ dµX =

(∫
Y

f dµY

)(∫
K/L

g dmK/L

)
for all f ∈ L∞(Y ) and g ∈ C(K/L). Then the homogeneous extension p : (X, τ) →
(Y, σ) is equal to the homogeneous skew-product extension q : Y ⋊ρ K/L→ (Y, σ).

Proof. Exercise.

We start with the proof of Proposition 12.3.1.

LetX⋊idK be a group-skew extension of (X, τ) by the trivial cocycle. Consider aK-
action on X ⋊id K and Y ⋊ρ K given by (x, k)k′ := (x, kk′) and (y, k)k′ := (y, kk′),
respectively. Since the K-action and the Γ-action commute, both X ⋊id K and
Y ⋊ρK can be viewed as concrete Γ×K-systems. By Fubini’s theorem, there exists
a factor map π : X ⋊id K → Y ⋊ρ K, defined by π((y, k), k′) = (y, kk′).

Let Z be the invariant factor of Y ⋊ρ K as a Γ-system, and let Z ′ be the invariant
factor of X ⋊id K as a Γ-system. Then Z is a factor of Z ′ as K-systems since the
K-action and the Γ-action commute.

We claim that Z ′ is isomorphic toK as aK-system. To do so, write prK : X×K → K
be the factor map to K and write η for the dynamics on X × K. We show that
UprK (L

2(K)) = fix(Uη). Translating this back onto the level of systems (cf. Section
2.2), this shows the claim.

For g ∈ L∞(K) we obtain that UprKg = 1 ⊙ g ∈ fix(Uη) by definition of η. This
implies the inclusion UprK (L

2(K)) ⊆ fix(Uη). For the converse direction, let P ∈
L (L2(X×K)) be the orthogonal projection onto fix(Uη). By linearity and continuity
it suffices to show that P (f ⊙ g) ∈ UprK (L

2(K)) for all f ∈ L2(X) and g ∈ L2(Y ).
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However, for such f and g we readily obtain, by definition of η, that

co {Uηγ (f ⊙ g) | γ ∈ Γ} = co {Uτγ (f) | γ ∈ Γ} ⊙ g.

Thus, by the mean ergodic theorem (see Theorem 3.1.5) we find some some h ∈
L2(X) with P (f ⊙ g) = h⊙ g. Since P (f ⊙ g) is invariant, h has to be invariant as
well, hence h = c1 for some c ∈ C by ergodicity of (X, τ). Therefore P (f ⊙ g) =
1⊙ cg = UprK (cg), which yields the claim.

Now, by Proposition 12.3.3, Z is isomorphic to H\K as a K-system, for some closed
subgroup H of K. The group H is known as the Mackey range of the cocycle
ρ.

Before continuing with the proof of Proposition 12.3.1, we establish the following
auxiliary result:

Lemma 12.3.5. Let V be a symmetric neighborhood of the identity in K (that is,
V = V −1). Then there exists a measurable function U : Y → K such that

U(σγ(y))ργ(y)U(y)
−1 ∈ V 2HV 2

for almost every y and every γ ∈ Γ.

Proof. By the definition of the Haar measure, H · V has positive measure in K/H.
We can identify H · V with a positive measure subset of Z, and therefore with a
positive measure subset E of Y ×K. Note that for all k ∈ K such that k /∈ V HV ,
we have HV ∩HV k−1 = ∅, and therefore µY ⊗mK(E ∩ Ek) = 0.

Since E is invariant and has positive measure, it follows from the ergodicity that
E(1E | Y ) ≡ C > 0. Since K is compact, K ⊆

⋃n
i=1 kiV for some k1, . . . , kn ∈ K,

which implies 1E ≤
∑n

i=1 1E1Y×kiV . Therefore,

n∑
i=1

E(1E1Y×kiV | Y ) > 0.

Now define

i(y) := min{i ∈ {1, . . . , n} : E(1E1Y×kiV | Y )(y) > 0}

for almost every y, and let U(y) := k−1
i(y). Then U : Y → K is measurable, and for

almost every y
E(1E1Y×U−1(y)V | Y )(y) > 0. (12.3)

Since µY ⊗mK(E ∩ Ek) = 0 for all k /∈ V HV , we have

(1E(y, h)1Y×U−1(y)V (y, h)) · k(1E(y, h)(1(y, h)− 1Y×U−1(y)V 2HV (y, h))) = 0



186 LECTURE 12.

for almost every (y, h) and every k ∈ K. Integrating the last identity with respect
to k and then taking conditional expectations over Y , we obtain:

E(1E(1− 1Y×U−1V 2HV ) | Y ) = 0. (12.4)

Using the Γ-invariance of E in (12.3) and cocycle property for 0 = γ + (−γ), for all
γ ∈ Γ, we have

E(1E1Y×ρ(γ,σγ(·))U−1(σγ(·))V | Y ) > 0.

Comparing this with the identity (12.4), we conclude:

E(1Y×U−1V 2HV 1Y×ρ(γ,σγ(·)U−1(σγ(·))V | Y ) > 0.

This implies that for almost every y, and every γ ∈ Γ,

U−1V 2HV ∩ ρ(γ, σγ(y))U−1(σγ(y))V ̸= ∅.

In particular, for almost every y, and every γ ∈ Γ,

U(σγ−1(y))ργ−1(y)U(y)−1 ∈ V 2HV 2.

We now proceed to construct a cocycle cohomologous to ρ that takes values in
H:

Proposition 12.3.6. There exists a measurable function U : Y → K such that the
cocycle ρ̃(γ, y) := U(σγ(y))ρ(γ, y)U(y)

−1 ∈ H for almost every y and every γ ∈ Γ.

Proof. Exercise.

We continue with the proof of Proposition 12.3.1. Consider a cocycle ϱ̃ as in Propo-
sition 12.3.6. We claim that the system Y ⋊ρ̃ H is ergodic.

By what we have already shown and since ϱ is cohomologous to ρ̃ as a cocycle to
K, we can identify the invariant factor Z of the system Y ⋊ρ̃K with H\K with the
corresponding factor map given by r := π◦prK : Y ×K → H\K where π : K → H\K
is the canonical factor map and prK : Y ×K → K is the projection onto the second
component. For g ∈ C(K) we have the quotient integral formula∫

K

g(k) dmK(k) =

∫
H\K

∫
H

g(hk) dmH(h) dmH\K(Hk),

see, e.g., [DE09, Theorem 1.5.2]. By Fubini–Tonelli theorem,∫
Y×K

f ⊙ g d(µY ⊗mK) =

∫
H\K

∫
Y×H

(f ⊙ g)(y, hk) d(µY ⊗mH)(y, h) d(Hk)
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for all f ∈ L∞(Y ) and g ∈ C(K).

Write m̃H for the regular Borel probability on K obtained by trivially extending
mH to K, and rk : K → K, k′ 7→ k′k for the right rotation with k ∈ K. Then the
pushforward measures (rk1)∗m̃H and (rk2)∗m̃H for k1, k2 ∈ K agree if Hk1 = Hk2.
We can thus define µHk := µY ⊗ (rk)∗m̃H for Hk ∈ H\K. The above formula
yields ∫

K

f ⊙ g d(µY ⊗mK) =

∫
K/H

∫
K

f ⊙ g dµHk d(Hk)

for all f ∈ L∞(Y ) and g ∈ C(K). As usual, we may assume that Y is a compact
metric space. Using that the elements f ⊗ g for f ∈ C(Y ) and g ∈ C(K) span a
dense subset of C(Y ×K), a moment’s thought reveals that (µHk)Hk∈H\K defines a
disintegration of Y ×K over the invariant factor H\K. By Exercise 8.5 we obtain
that the system (XHk, τHk) given by the measurable space Y × K, the measure
µHk = µY ⊗ (rk)∗m̃H and the action defined by the cocycle ϱ̃ is ergodic for almost
every Hk ∈ H\K. In particular, there is some Hk ∈ H\K such that (XHk, τHk) is
ergodic. But then, since

Y ×H → Y ×K, (y, h) 7→ (y, hk−1)

defines an isomorphism between Y ⋊ρ̃ H and (XHk, τHk), we finally obtain that
Y ⋊ρ̃ H is ergodic.

To conclude the proof, apply Proposition 12.3.2 to deduce that L2(Y ⋊ρ̃ H) ⊖ C1
and the invariant Markov sublattice of L2(X ⋊id H) are orthogonal subspaces in
L2(X ×H) (when properly identified). Therefore, for f ∈ L∞(Y ) and g ∈ C(H), we
have for all h′ ∈ H that∫

X

f(y)g(hh′) dµX(y, h) =

∫
Y×H

f(y)g(h) d(µY ⊗mH)(y, h).

We plug in h′ = 1 and apply Proposition 12.3.4. This completes the proof of
Proposition 12.3.1.
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12.4 Comments and Further Reading
The definition of compact extensions by invariant finite rank modules and its geo-
metric characterization, as presented in Theorem 12.2.3, originates from the founda-
tional work of Mackey [Mac66] and Zimmer [Zim76a, Zim76b]. Our initial definition
of compact extensions in terms of conditional almost periodicity, as well as its rela-
tion to conditional Hilbert–Schmidt operators, follows Furstenberg’s classical book
[Fur14], though we adopt the conditional Hilbert space formalism introduced by Tao
in [Tao09]. The compilation of the proof of the equivalence between the definitions
via conditional almost periodicity and invariant finite rank modules, as presented
here, is new, although it draws inspiration and ideas from our work on uncountable
Furstenberg–Zimmer structure theory [Jam23, EHK24]. Our proof of Proposition
12.3.1 is based on Tao’s blog post [Tao14a], while the proof of Theorem 12.2.3 follows
[Jam23], which was in turn inspired by the proof given in Glasner’s book [Gla03]. A
number of works generalize various aspects of the classification results from the pre-
vious two lectures, see [Aus10, Ell87, EK22a, JT22, Jam23, EHK24, EJK23].
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12.5 Exercises
Exercise 12.1. Prove Proposition and Definition 12.2.2.

Exercise 12.2. Prove Proposition 12.3.2.

Exercise 12.3. Prove Proposition 12.3.4.

Exercise 12.4. Prove Proposition 12.3.6. Hint: Using Lemma 12.3.5, find a se-
quence of Un such that ρnγ := Un ◦ UσργU−1

n has distance at most 1/n to H for all
γ ∈ Γ. Then build measurably U out of the Un and verify that it satisfies the desired
property.

Exercise 12.5. Prove Lemma 12.2.5. Hint: Use the Krein–Milman Theorem (The-
orem 4.1.8) to locate an ergodic group extension by K from the ergodic homogeneous
extension by K/L, apply Proposition 12.3.1, and finally show that M = H ∩ L is
the right choice to obtain the homogeneous skew-product extension by H/M .
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Lecture 13

In the remaining lectures of this ISem, we provide an introduction to Host–Kra
structure theory, a significant and technically challenging refinement of Furstenberg–
Zimmer structure theory. Host–Kra theory was originally motivated by the difficult
problem of establishing L2-convergence of non-conventional ergodic averages, which
arise in Furstenberg’s multiple recurrence theorem. Since its inception, the theory
has grown into an active and broad area of research with applications to problems in
combinatorics and number theory. At its core, Host–Kra theory studies the classi-
fication of so-called characteristic factors of ergodic measure-preserving systems for
abelian group actions. These factors are for example relevant for understanding the
behavior of non-conventional ergodic averages and for advancing the inverse theory
of the Gowers norms in additive combinatorics (an ergodic theoretic variant of these
norms will be introduced in this lecture). Host–Kra structure theory investigates a
hierarchy of these factors, similar to the hierarchy in the Furstenberg–Zimmer struc-
ture theorem (Theorem 9.1.12). Our introduction will focus on the first non-trivial
case in this hierarchy. However, even in this case, due to space and time constraints,
we will omit a few technical details, for which references will be provided.

13.1 Motivation
Motivated by Furstenberg’s multiple recurrence theorem, it is natural to ask the
following question: Let (X, τ) be a concrete ergodic measure-preserving system over
Γ = Z, let k ≥ 1 be an integer, and let f ∈ L∞(X). Do the averages

1

N

N−1∑
n=0

k∏
i=1

U in
τ f

converge in L2(X), and if so, what is their limit? To simplify notation, henceforth,
we use EN as an abbreviation for 1

N

∑N−1
n=0 .

For k = 1, this is the content of von Neumann’s mean ergodic theorem (Theorem
3.1.1): The L2(X)-limit of ENUn

τ f exists and is equal to the conditional expectation

191
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of f with respect to the fixed space fix(Uτ ). In the case of ergodic systems, this
is simply the expectation of f - a constant. We say that the invariant factor is
characteristic for the averages ENUn

τ f , that is, to study the L2(X)-limit of these
averages, we can substitute f with its conditional expectation E(f | fix(Uτ )) in the
averages.

For k = 2, this is the content of Theorem 8.2.2. In this case, the results of Section
8.2 show that the Kronecker subsystem (Xkro, τkro) of (X, τ) (cf. Definition 7.1.14)
is characteristic for the averages ENUn

τ fU
2n
τ f . By applying the van der Corput in-

equality (Lemma 8.2.3), it suffices to study these averages whenever f ∈ L∞(Xkro)
(cf. Lemma 8.2.4). In this setting, the classification of the Kronecker subsystem as
a compact abelian group rotation, provided by the Halmos–von Neumann represen-
tation theorem (Theorem 6.2.6), was crucial in proving the convergence result (cf.
proof of Theorem 8.2.2).

In Section 13.2, we introduce a hierarchy of subsystems/factors Z0,Z1, . . . of the
system (X, τ) such that Zk−1 is characteristic for the averages

EN
k∏
i=1

U in
τ f

in the sense that the L2(X)-limit of these averages can be studied by replacing f
with its conditional expectation E(f | Zk−1). Thus, it suffices to study the L2(X)-
convergence of these averages whenever f is Zk−1-measurable.

The heart of Host–Kra structure theory lies in classifying these characteristic factors
Zk (for Γ = Z) as inverse limits of homogeneous systems formed on k-nilpotent Lie
groups. This algebro-geometric classification can be used to demonstrate L2(X)-
convergence.

In Section 13.3, we identify the first characteristic factor of an ergodic system with its
Kronecker subsystem. For the remainder of these lectures, our primary focus will be
on the second characteristic factor Z2, commonly referred to as the Conze–Lesigne
factor.

13.2 The Characteristic Factors
Throughout this lecture, we fix a countable discrete abelian group Γ and restrict
our attention to concrete measure-preserving systems over Γ defined on a Lebesgue
probability space. For this section, let (X, τ) denote an ergodic system.

We will obtain the characteristic factors of (X, τ) as coordinate projections from
cubic systems constructed from (X, τ). We begin by introducing these cubic sys-
tems.
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For any integer k ≥ 1, we denote by [k] the k-dimensional cube {0, 1}k. Thus, [k]
consists of ordered tuples ε = ε1 . . . εk, where εi ∈ {0, 1} for all i = 1, . . . , k. For
example, [2] consists of the tuples {00, 01, 10, 11}.
It will be convenient to fix an ordering on [k], and we choose the lexicographic
ordering. For instance, the lexicographic ordering on [3] is

000, 001, 010, 011, 100, 101, 110, 111.

Let 0 denote the first element in [k] under this ordering, for any k.

A facet α of [k] is a subset of vertices that forms a (k− 1)-dimensional cube within
[k]. For example, the facets of [2] are its edges, while the facets of [3] are its sides.
An upper facet is a facet that does not contain the vertex 0.

A cube symmetry ϑ : [k]→ [k] is a bijective map which maps facets to facets. The
symmetry group Sym([k]) is the set of all such cube symmetries equipped with
the composition of maps.

For α ⊆ [k], we denote by γα = (γαε )ε∈[k] the element of Γ[k] defined by the en-
tries

γαε :=

{
γ if ε ∈ α,
0 otherwise.

The facet group associated with the group Γ is the smallest subgroup of the product
group Γ[k] that contains γα for all γ ∈ Γ and all facets α ⊆ [k]. We denote the kth
facet group associated with Γ by Fk, and we denote by Fk∗ the subgroup of Fk
generated by elements γα, where α is an upper facet.

We define the cubic systems constructed from (X, τ) recursively. Let (X [0], τ [0]) =
(X, τ). Suppose we have constructed the cubic system (X [k−1], τ [k−1]) for some
k ≥ 1. Then, the cubic system (X [k], τ [k]) is the relatively independent product (see
Definition 8.4.5) of two copies of X [k−1] over its invariant factor (X [k−1])inv, where
τ [k] is the diagonal action τ × · · · × τ . Note that X [k] does not carry the 2k-fold
product measure. We denote by µ[k] = µX[k] the relatively independent probability
measure of the cubic system (X [k], τ [k]).

The elements of X [k] are of the form (xε)ε∈[k] where xε ∈ X for ε ∈ [k], see the
Diagram 13.2.

x111

x110

x101

x100

x011

x010

x001

x000
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For k = 1, the cubic system (X [1], τ [1]) is the product system (X × X, τ × τ) due
to the ergodicity of (X, τ). By Theorem 7.1.16 and Proposition 7.1.10, the product
system (X×X, τ×τ) is not ergodic unless the system (X, τ) is weakly mixing.

With some effort one can show that the symmetry group of [k] acts in a measure-
preserving way on the kth cubic system (see [HK18, Proposition 8 of Chapter
8]):

Theorem 13.2.1. For each cube symmetry ϑ : [k] → [k] the map ϑ∗ : X [k] → X [k],
defined by ϑ∗((xε)ε∈[k]) := (xϑ(ε))ε∈[k] for (xε)ε∈[k] ∈ X [k], preserves the cubic measure
µ[k] on (X [k], (ΣX)

[k]). Moreover, the induced measure-preserving Sym([k])-action on
(X [k], µ[k]) commutes with the diagonal action of Γ.

One can now also show that the facet group acts as automorphisms on the cubic
systems:

Proposition 13.2.2. For every facet α ⊆ [k], the map σγα : X [k] → X [k], defined by
σγα((xε)ε∈[k]) := (τγαε xε)ε∈[k] for (xε)ε∈[k] ∈ X [k], preserves the cubic measure µ[k] on
(X [k], (ΣX)

[k]). Moreover, the induced measure-preserving Fk-action on (X [k], µ[k])
commutes with the diagonal action of Γ.

Proof. Exercise.

As already pointed out, the cubical systems will generally not be ergodic with respect
to the action of Γ. However, the facet group acts ergodically:

Proposition 13.2.3. Restrict the measure-preserving Fk-action on (X [k], µX[k]), as
defined in Proposition 13.2.2, to the subgroup Fk∗ . Denote by J [k] the invariant
σ-algebra of (X [k], µ[k]) with respect to this Fk∗ -action. Then, J [k] is, up to µ[k]-
equivalence, equal to π−1

0 (ΣX), where π0 : X [k] → X is the first coordinate projection.
In particular, the measure-preserving Fk-action on (X [k], µ[k]) is ergodic.

Proof. Exercise.

Using the cubical systems, we now introduce an important definition.

Definition 13.2.4. For f ∈ L∞(X) and an integer k ≥ 1, we define the kth Gowers–
Host–Kra seminorm ∥f∥k of f by the formula

∫
X[k]

∏
ε∈[k]

C |ε|f(xε)

1/2k

=

∫
X[k−1]

∣∣∣∣∣∣E
 ∏
ε∈[k−1]

C |ε|f(xε)

∣∣∣∣(X [k−1])inv

∣∣∣∣∣∣
21/2k

,

where |ε| =
∑k

i=1 εi mod 2 and C is the complex conjugation map.
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For example, the second Gowers–Host–Kra seminorm ∥f∥2 is(∫
X[2]

f(x00)f(x01)f(x10)f(x11)

)1/4

=

(∫
X[1]

∣∣∣E(f(x0)f(x1) | (X [1])inv)
∣∣∣2)1/4

.

The fact that the Gowers–Host–Kra seminorms are indeed seminorms on L∞(X)
is left as an exercise, as well as the following remarkable property of these semi-
norms:

Proposition 13.2.5 (Gowers–Cauchy–Schwarz inequality). For fε ∈ L∞(X), ε ∈
[k], we have ∣∣∣∣∣

∫
X[k]

⊗
ε∈[k]

fε dµ
[k]

∣∣∣∣∣ ≤ ∏
ε∈[k]

∥fε∥k. (13.1)

For any integer k ≥ 1, we define the (k− 1)th characteristic factor Zk−1 of the given
system (X, τ). To do so, we specify a Γ-invariant σ-subalgebra Σk−1 of ΣX , which
then gives rise to a factor. Informally, a measurable subset A ⊆ X belongs to this
σ-subalgebra if, after embedding it into the 0-th corner of the cube X [k] (i.e., by
considering π−1

0 (A)), it can be identified with a set in X [k] that “does not depend on
the first coordinate.” We now formalize this intuition.

Let µ[k]∗ be the pushforward measure of µ[k] with respect to the coordinate projection
from X [k] to the (2k − 1)-fold product measurable space X [k]∗ , where [k]∗ = [k] \
{0}. Then, the measure-preserving action of Fk∗ on (X [k], µ[k]) induces a measure-
preserving action of Fk∗ on (X [k]∗ , µ[k]∗). Let J [k]∗ denote the Fk∗ -invariant factor on
(X [k]∗ , µ[k]∗). For E ∈ J [k]∗ , X×E ∈ J [k], and therefore, by Proposition 13.2.3, there
exists F ∈ X such that µ[k]((X ×E)∆(F ×X [k]∗)) = 0. Conversely, every E ∈ Σ[k]∗

satisfying µ[k]((X × E)∆(F × X [k]∗)) = 0 for some F ∈ X belongs to J [k]∗ . With
these preliminaries at hand, we can define the characteristic factors:

Definition 13.2.6. Let k ≥ 1 be an integer. We define the σ-algebra Σk−1 to be
the set of F ∈ ΣX such that there exists E ∈ J [k]∗ satisfying

µ[k]((X × E)∆(F ×X [k]∗)) = 0.

The correspondence between E ∈ J [k]∗ and F ∈ Σk−1 guarantees that Σk−1 is a
Γ-invariant σ-subalgebra of ΣX , and thus induces an ergodic subsystem Zk−1 of
(X, τ). We call this subsystem Zk−1 the (k − 1)th characteristic factor of the
ergodic system (X, τ).

The 0th characteristic factor is simply the invariant factor and is thus trivial due
to the ergodicity of (X, τ). The 1st characteristic factor will be identified with the
Kronecker subsystem in the next section. We call the 2nd characteristic factor the
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Conze–Lesigne factor, and the remaining part of this ISem lecture will be devoted
to its classification.

Finally, it follows from von Neumann’s mean ergodic theorem (Theorem 3.1.1)
applied to the group Fk∗ that (X [k], µ[k]) is the relatively independent product of
(X [k]∗ , µ[k]∗) and (X,µ) over Σk−1 ≡ J [k]∗ . This, together with the Gowers–Cauchy–
Schwarz inequality (13.1) and the identification of Σk−1 and J [k]∗ , leads to the follow-
ing relation between the Gowers–Host–Kra seminorms and the characteristic factors:
For f ∈ L∞(X),

E(f | Zk−1) = 0 ⇐⇒ ∥f∥k = 0. (13.2)

The relation (13.2), combined with the following proposition, shows that the factor
Zk−1 is characteristic for the averages EN

∏k
i=1 U

in
τ f .

Proposition 13.2.7. Let (X, τ) be a concrete ergodic measure-preserving system
over Γ = Z. Let k ≥ 1 be an integer and f1, . . . , fk ∈ L∞(X) with ∥fi∥L∞(X) ≤ 1 for
all i = 1, . . . , k. Then

lim sup
N

∥∥∥∥EN k∏
i=1

U in
τ fi

∥∥∥∥
L2(X)

≤ min
1≤l≤k

(l∥f∥k). (13.3)

Proof. We induct on k. For k = 1, the mean ergodic theorem (Theorem 3.1.1) yields
that

lim
N
∥ENUn

τ f∥L2(X) =

∣∣∣∣∫
X

f dµX

∣∣∣∣ = ∥f∥1.
Suppose that (13.3) holds for some k ≥ 1. Let f1, . . . , fk+1 ∈ L∞(X) with ∥fi∥L∞(X) ≤
1 for all i = 1, . . . , k+1. Choose l ∈ {2, . . . , k+1} (the argument below shows that
one can treat the case l = 1 similarly). For every n ≥ 1, denote by

gn =
k∏
i=1

U in
τ fi.

By the van der Corput inequality (Lemma 8.2.3),

lim sup
N
∥ENgn∥2L2(X) ≤ lim sup

H
EH
(
lim sup

N

∣∣∣∣EN ∫
X

gn+hgn dµX

∣∣∣∣) .
Denote the right-hand side of the previous inequality by M . We need to show that



13.3. THE KRONECKER FACTOR 197

M ≤ l2∥fl∥2k+1. Let h ≥ 1. By the Cauchy–Schwarz inequality,∣∣∣∣EN ∫
X

gn+hgn dµX

∣∣∣∣ =
∣∣∣∣∣
∫
X

f1U
h
τ f1 dµXEN

(
k+1∏
i=2

U (i−1)n
τ (fiU

ih
τ fi)

)∣∣∣∣∣
≤ ∥f1Uh

τ f1∥L2(X) ·
∥∥∥∥EN k+1∏

i=2

U (i−1)n
τ (fiU

ih
τ fi)

∥∥∥∥
L2(X)

.

It follows from the mean ergodic theorem, the assumption ∥f1∥L∞ ≤ 1, and the
inductive assumption that

lim sup
N

∣∣∣∣EN ∫
X

gn+hgn dµX

∣∣∣∣ ≤ l∥flUh
τ fl∥k.

Now,

M ≤ lim sup
H

lEH∥flUh
τ fl∥k ≤ l2 lim sup

H

(
EH∥flUh

τ fl∥2
k

k

)1/2k
.

Define
F ((xε)ε∈[k]) :=

∏
ε∈[k]

f(xε) for (xε)ε∈[k] ∈ X [k].

From the definition of the seminorm ∥ · ∥k,

EH∥fUh
τ f∥2

k

k = EH
∫
X[k]

Uh
τ [k]F · F dµ[k].

By another application of the mean ergodic theorem and the definition of the semi-
norm ∥ · ∥k+1,

lim
H

EH
∫
X[k]

Uh
τ [k]F · F dµ[k] =

∫
X[k]

E(F | Σinv(X
[k]))2 dµ[k]

=

∫
X[k+1]

F ⊙ F dµ[k+1] = ∥f∥2k+1

k+1 .

This completes the induction step.

13.3 The Kronecker Factor
We recall some terminology and results from Lectures 5–7. Let (Xkro, τkro) denote
the Kronecker subsystem of (X, τ) (Definition 7.1.14). By Theorem 6.2.6, (Xkro, τkro)
is isomorphic to a rotational system (G, τc), where G is a compact abelian group
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equipped with the Haar measure, and τc : Γ → G is a group homomorphism. We
also refer to (Xkro, τkro) as the Kronecker factor of the system (X, τ).

We state the following structure theorem for the Kronecker factor:

Theorem 13.3.1 (Structure of Kronecker factor). The Kronecker factor (Xkro, τkro)
is isomorphic to the inverse limit of ergodic rotational systems on compact abelian
Lie groups.

A (real) compact abelian Lie group is isomorphic to a group of the form Td×G, where
T is a torus and G is a finite abelian group (see [Tao14b, §1.4] for a reference).

Let (Gn) be a sequence of compact abelian groups such that for each pair m < n,
there is a surjective and continuous group homomorphism πm,n : Gn → Gm. The
inverse limit of the Gn is defined to be the compact abelian group G = lim←−nGn,
consisting of all sequences (xn), where xn ∈ Gn for each n, such that for all pairs
m < n, we have πm,n(xn) = xm, together with the projection maps πn : G→ Gn for
each n.

Kolmogorov’s extension theorem (see, e.g., [Tao11, §2.4]) allows us to form a translation-
invariant probability measure µG on the inverse limit G from the Haar measures mGn

on the Gn. By the uniqueness of the Haar measure on compact abelian groups, µG
must coincide with the Haar measure mG of G.

Proof. Let (G, τc) be the rotational system isomorphic to (Xkro, τkro) given by The-
orem 6.2.6. By the Gleason–Yamabe theorem for compact abelian groups (see, e.g.,
[Tao14b, §1.4]), G is isomorphic to the inverse limit of compact abelian Lie groups
Gn = G/Hn, with projection maps πn : G → Gn. The Haar measure mGn on Gn is
the pushforward of the Haar measure mG on G under the projection map πn.

We define an ergodic action σn on Gn by (σn)γ(gHn) := (τc)γ(g)Hn for all γ ∈ Γ and
gHn ∈ G/Hn. Using the identification G = lim←−nGn, we recover the action τc on G
from the inverse limit actions τ̃((gn)) := (σn(gn)). By construction, the projection
maps πn : G→ Gn are factor maps.

Next, we aim to identify the Kronecker factor (Xkro, τkro) with the first characteristic
factor Z1. For this, we require the following lemma, which follows from Proposition
5.1.10 and Theorem 5.3.1.

Lemma 13.3.2. The fixed subspace fix(Uτ×τ ) of the product system (X ×X, τ × τ)
is spanned by tensors f ⊗ g, where f, g are eigenfunctions of the system (X, τ).

Proposition 13.3.3. The Kronecker subsystem (Xkro, τkro) of (X, τ) is isomorphic
to the first characteristic factor Z1 of (X, τ).

Proof. Let (G, τc) be the rotational system isomorphic to (Xkro, τkro) given by The-
orem 6.2.6, and let φ : G → Xkro denote the isomorphism. Let qkro : X → Xkro be
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the factor map. Define q : X × X → G by q(x1, x2) := φ(qkro(x1))φ(qkro(x2))
−1.

We claim that q−1(ΣG) = Σinv(X ×X) modulo almost sure equality. By definition,
q−1(ΣG) ⊆ Σinv(X ×X). By Lemma 13.3.2, we also have Σinv(X ×X) ⊆ q−1(ΣG),
modulo almost sure equality.

We now show that
µ[2] =

∫
G

µs × µs dmG(s),

where µs is a probability measure on X ×X, defined by∫
X×X

f ⊙ g dµs =
∫
G

E(f | G)(z) · E(g | G)(z + s) dmG(z), (13.4)

for f, g ∈ L∞(X).

It is straightforward to verify that

µ× µ =

∫
G

µs dmG(s). (13.5)

Since disintegrations of measures are essentially unique, it follows that (µs)s∈G de-
fines a disintegration of µ×µ over its invariant factor which we can identify with G
by the first part of the proof. This proves the claim.

By the above and rotation invariance of the Haar measure, for f ∈ L∞(X),

∥f∥42 =
∫
G

∫
G

∫
G

E(f | G)(z1) · E(f | G)(z2 + s)

× E(f | G)(z1 + z2) · E(f | G)(z1 + z2 + s) dmG(z1) dmG(z2) dmG(s).
(13.6)

The expression on the right-hand side of (13.6) is the fourth power of the 2nd
Gowers–Host–Kra seminorm of E(f | G). Thus, ∥f∥2 = 0 if and only if E(f | G) =
0 since the 2nd Gowers–Host–Kra seminorm is a norm on rotational systems by
Exercise 13.4.

By (13.2), it follows that (Xkro, τkro), the Kronecker factor of (X, τ), is isomorphic
to the first characteristic factor Z1.

13.4 The Conze–Lesigne Factor
Our next and final aim in this ISem is to establish a structure theorem for the Conze–
Lesigne factor Z2. We begin by showing that while Z2 is not itself a rotational
system, it is isomorphic to a compact abelian group skew-product extension of the
Kronecker factor Z1. Furthermore, we will prove something more precise about the
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associated cocycle: namely, that it is a cocycle of type 2, satisfying a cubic vanishing
cohomology condition. This condition is central to deriving the structure theorem
for the Conze–Lesigne factor.

Let us first revisit the notion of measurable cocycles and skew-product extensions
as introduced in Definition 12.2.2.

Let (Y, σ) be a concrete measure-preserving system over a countable discrete abelian
group Γ, and let (G, ·) be a compact metrizable group (not necessarily abelian). A
measurable function ρ : Γ× Y → G, (γ, y) 7→ ργ(y) is called a cocycle if it satisfies
the cocycle property

ργ1+γ2(y) = ργ1(σγ2(y)) · ργ2(y) = ργ2(σγ1(y)) · ργ1(y)

for almost every y ∈ Y and for every pair γ1, γ2 ∈ Γ.

A cocycle ρ is said to be a coboundary if there exists a measurable function φ : Y →
G such that

ργ(y) = φ(σγ(y)) · φ(y)−1,

for almost every y ∈ Y and every γ ∈ Γ.

Given a cocycle ρ, we can define the notion of a group skew-product Y ⋊ρ G.
If H ≤ G is a closed subgroup, we also define the homogeneous skew-product
Y ⋊ρG/H. A cocycle ρ defined on an ergodic system (Y, σ) is called ergodic if the
group or homogeneous skew-product extension it defines is an ergodic system.

Let (X, τ) be a concrete measure-preserving system over Γ. Let Z1 = (Z, τc) be
the rotational system representing the Kronecker factor of (X, τ). Our next goal is
to show that the Conze–Lesigne factor Z2 is isomorphic to a group skew-product
extension Z ⋊ρ G, where G is a compact metrizable abelian group.

To achieve this, we first introduce some preparatory results and notations in this
lecture and prove the aforementioned representation in the next one. We begin with
an important result in measurable cohomology that gives a criterion for when a
cocycle with values in an abelian group is a coboundary.

Theorem 13.4.1 (Moore–Schmidt theorem). Let (Y, σ) be a concrete ergodic measure-
preserving system over Γ, let G be a metrizable compact abelian group, and let
ρ : Γ× Y → G be a cocycle. Then ρ is a coboundary if and only if ξ ◦ ρ : Γ× Y → T
is a coboundary for all continuous characters ξ ∈ G′.

Proof. If ρ is a coboundary, then a direct computation shows that ξ◦ρ is a cobound-
ary for all ξ ∈ G′. Conversely, assume that for each character ξ ∈ Ĝ′ there exists a
representative φξ of an element in L∞(Y,T) such that for all γ ∈ Γ,

ξ ◦ ργ(y) = φξ(σγ(y))φξ(y)
−1 (13.7)
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holds for almost every y ∈ Y .

For any ξ1, ξ2 ∈ Ĝ, one sees from comparing (13.7) for ξ1, ξ2, ξ1 · ξ2 that the function
φξ1·ξ2 ·φ−1

ξ1
·φ−1

ξ2
is Γ-invariant, and hence equal in L∞(Y,T) to a constant c(ξ1, ξ2) ∈

T by ergodicity. As in the proof of Lemma 6.2.12, Lemma 6.2.10 lets us find a
homomorphism w : L∞(Y,T) → T with w(c1) = c for every c ∈ T. If we define
the modified function φ̃ξ := φξ · w(φξ)−1, then we have φ̃ξ1·ξ2 = φ̃ξ1 · φ̃ξ2 for each
ξ1, ξ2 ∈ G′.

Since U is metrizable, we obtain that C(G) and hence also L2(G) is separable. Since
the dual G′ defines an orthonormal basis of L2(G) (see Proposition 6.1.19), it is
therefore at most countable. Hence for almost every y ∈ Y , the map y 7→ φ̃ξ(y) is
a homomorphism from G′ to T, and thus by Pontryagin duality (see, e.g., [DE09,
Chapter 3]) takes the form φ̃ξ(y) = ξ ◦ F (y) for some almost everywhere defined
map F : Y → G, which one can verify to be measurable. Using that G′ separates
the points of G (see Proposition 6.1.16), one can then check that for all γ ∈ Γ

ργ(y) = F (σγ(y)) · F (y)−1

for almost every y ∈ Y , giving the claim.

The next result gives us a criterion to test when a cocycle with values in an abelian
group is ergodic.

Lemma 13.4.2. Let (Y, σ) be a concrete ergodic measure-preserving system over Γ,
let G be a metrizable compact abelian group, and let ρ : Γ × Y → G be a cocycle.
Then ρ is not ergodic if and only if there exists a nontrivial character ξ ∈ G′ such
that ξ ◦ ρ is a coboundary.

Proof. For Z-systems, the proof is based on Fourier analysis, and can be found in
[HK18, Lemma 8 in §5.3]. The same proof extends to systems for arbitrary Γ.

Proposition 13.4.3. Let (Y, σ) be a concrete ergodic measure-preserving system
over Γ, let G be a metrizable compact abelian group, and let ρ : Γ × Y → G be a
cocycle. There exists a closed subgroup H ≤ G and an ergodic cocycle ψ : Γ×Y → H
such that ρ is cohomologous to ψ if both are viewed as cocycles with values in G.

Proof. Let L = {ξ ∈ G′ : ξ◦ρ coboundary} and H be the annihilator of L in G, that
is {u ∈ G : ξ(u) = 0 for all ξ ∈ L}. Let π : G → G/H be the canonical projection
and η = π ◦ ρ be the induced cocycle with values in G/H. As a consequence of
Pontryagin duality (see again [DE09, Chapter 3]) the map (G/H)′ → L, ξ 7→ ξ ◦π is
a group isomorphism. Thus ξ◦η is a coboundary for every ξ ∈ (G/H)′. By Theorem
13.4.1, η is a coboundary and there is a measurable function F : Y → G/H such that
ηγ = (f ◦σγ) ·f−1 almost everywhere for all γ ∈ Γ. Since G,G/H are Polish groups,
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by [BK96, Theorem 1.2.4], there is a Borel function l : G/H → G such that l(uH) ∈
uH for all cosets uH ∈ G/H. Let F := l◦f and ψγ(y) := ργ(y)·(F (σγ(y))·F (y)−1)−1

for y ∈ Y and γ ∈ Γ. A straightforward computation shows that, after potential
changes on a nullset, ψ maps to H. Thus ψ : Γ × Y → H is a cocycle which is
cohomologous to ρ by construction.

Towards a contradiction, assume that ψ is not ergodic. By Lemma 13.4.2, there is a
nontrivial ξ ∈ H ′ such that ξ◦ψ is a coboundary. We can extend ξ to some character
ξ′ ∈ G′ by Lemma 6.2.10. By assumption, ξ′ ∈ L and thus must annihilate H. In
particular, its restriction ξ is trivial on H which is contradictory.

We establish a criterion for when a compact abelian group extension is a group
skew-product extension:

Lemma 13.4.4. Let (Y, σ) be an ergodic concrete measure-preserving system over
Γ, let K be a compact metrizable abelian group, and let ρ : Γ × Y → K be an
ergodic cocycle. Suppose that (X, τ) is an ergodic group extension of (Y, σ) in the
sense of Definition 12.2.4. Then (X, τ) is the group skew-product Y ⋊ρ K, that is,
µX = µY ⊗mK.

Proof. For Z-systems, the proof relies on Fourier analysis and can be found in [HK18,
Lemma 4 in §5.2]. The same proof extends to systems for arbitrary Γ.

The following proposition will help us identify the Conze–Lesigne factor Z2 as a
homogeneous skew-product extension of Z1.

Proposition 13.4.5. Let (X, τ) be a concrete ergodic measure-preserving system
over Γ, and let qkro : (X, τ)→ (Z, c) be the factor map to the Kronecker factor (Z, c)
of (X, τ). Suppose q : (X, τ)→ (Y, σ) is an extension of concrete measure-preserving
systems over Γ.

If ΣX is generated by the pullback of ΣY and ΣZ (up to almost sure equivalence),
then there exists a closed subgroup H ≤ Z and a cocycle ρ : Γ × Y → H such that
the extension q : (X, τ) → (Y, σ) is isomorphic to the group skew-product extension
p : Y ⋊ρ H → (Y, σ).

Proof. Define a cocycle ψ : Γ× Y → Z, (γ, y) 7→ ψγ(y) by ψγ := cγ1 : Y → Z for all
γ ∈ Γ. By Proposition 13.4.3, there exists a closed subgroup H ≤ Z and an ergodic
cocycle ρ : Γ× Y → H that is cohomologous to ψ within Z. That is, there exists a
measurable function f : Y → Z such that

ψγ(y) = f(σγ(y)) · f(y)−1 · ργ(y),

for almost every y ∈ Y and for all γ ∈ Γ.
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Define π(x) := qkro(x) · f(q(x))−1 for almost every x ∈ X. A direct computation
shows that

π(τγ(x)) = π(x) · ργ(q(x)),

for almost every x ∈ X and for all γ ∈ Γ.

Let l : Z → Z/H denote the canonical projection. It follows that l ◦π is σ-invariant,
and thus, by ergodicity, it must be equal to some constant1 dH ∈ Z/H µY -almost
surely.

By replacing f with df and π with dπ, we preserve the identities they satisfy while
ensuring that π takes values in H.

Define Φ: X → Y × H by Φ(x) := (q(x), π(x)), and let λ = Φ∗µX denote the
corresponding pushforward measure. Since Φ ◦ τγ = (τρ)γ ◦ Φ for all γ ∈ Γ (where
τρ denotes the skew-product dynamics given by the cocycle ρ), we obtain that Φ is
a factor map from (X, τ) to Y ⋊ρ H.

Since λ projects onto µX , it follows from Lemma 13.4.4 that λ = µY ⊗ mH . Fur-
thermore, since ΣX is generated by the pullbacks of ΣY and ΣZ (up to almost sure
equivalence), Φ establishes an isomorphism.

1The composition of l with any character ξ ∈ (Z/H)′ is also σ-invariant and hence a constant
dξ. The map ξ 7→ dξ is a group homomorphism, and therefore, by Pontryagin duality, corresponds
to an element of Z/H.
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13.5 Comments and Further Reading
The L2-convergence of the double averages ENUn

τ fU
2n
τ f was first established by

Furstenberg [Fur77]. The concept of characteristic factors was explicitly introduced
in Furstenberg and Weiss [FW96a]. The existence of limits for k = 3, under the
additional assumption that the system is totally ergodic, was shown by Conze and
Lesigne in a series of papers [CL84, CL88a, CL88b]. The general case for arbi-
trary k was independently established by Host and Kra [HK05] and Ziegler [Zie07].
Although they defined the characteristic factors differently, Leibman [Ber06] later
showed that these definitions are equivalent for Z-actions.

In this lecture, we follow the exposition of Host and Kra as presented in their
textbook [HK18]. While the results in [HK18] are stated for Γ = Z, the proofs of
the results we needed easily adapt to the general case of arbitrary countable abelian
Γ.

The proof of the Moore–Schmidt theorem is taken from [JT23b] by Tao and the
first author. This result originally goes back to the work of Moore and Schmidt
[MS80].
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13.6 Exercises
Exercise 13.1. Prove Proposition 13.2.2.

Exercise 13.2. Prove Proposition 13.2.3.

Exercise 13.3. Prove that the Gowers–Host–Kra seminorms satisfy the properties
of a seminorm.

Exercise 13.4. Prove that if (X, τ) is a rotational system (G, τc), then the Gowers–
Host–Kra seminorms are norms for all k ≥ 2.

Exercise 13.5. Prove Proposition 13.2.5.

Exercise 13.6. Establish (13.2) by filling in the details of the proof sketch in the
paragraph before (13.2).
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Lecture 14

We continue the study of the Conze–Lesigne factor Z2 of an ergodic measure-
preserving system (X, τ) over a countable abelian group Γ.

Our first goal in this lecture is to show that Z2 is isomorphic to a compact abelian
group skew-product extension Z⋊ρG of the Kronecker factor (Z, τc) of (X, τ), where
the cocycle ρ satisfies a specific cohomological condition of type 2.

In the second part, we provide a detailed outline of the proof of the structure theorem
for Conze–Lesigne systems, which characterizes these systems as inverse limits of
translational systems formed on locally compact 2-nilpotent groups.

14.1 Abelian Extensions

To prove that Z2 is isomorphic to a compact abelian group skew-product extension
Z⋊ρG, we first identify Z2 as a compact extension of the Kronecker factor (Z, τc). By
the Mackey–Zimmer representation theorem (Theorem 12.2.3), Z2 is isomorphic to
a homogeneous skew-product extension Z⋊ρG/H for some compact (not necessarily
abelian) group G. In the second part, we use the properties of the characteristic
factor Z2 as a certain projection of the cubic system X [2] to show that G/H is
actually abelian.

We start with some auxiliary results.

Lemma 14.1.1. Let (Y, σ) be an ergodic concrete measure-preserving system over
Γ, let G be a metrizable compact group, let H ≤ G be a closed subgroup, and let
ρ : Γ × Y → G be an ergodic cocycle. Let p : (X, τ) = Y ⋊ρ G/H → (Y, σ) be the
associated ergodic homogeneous skew-product extension. Then every τ × τ -invariant
measurable set E ⊆ X×X is also V ×V -invariant, where V is the vertical translation
action defined by Vg(y, hH) = (y, g · hH) for g ∈ G, y ∈ Y , and hH ∈ G/H.

Proof. Let (Z, τc) be the Kronecker factor of (X, τ) with factor map pkro : (X, τ)→
(Z, τc). Define W as the subsystem of (X, τ) corresponding to the invariant σ-

207
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subalgebra generated by pkro and p.

Thus, we have a chain of extensions (X, τ)→ W → (Y, σ). The conditional expecta-
tion operator E(· | W ) from L2(X) to L2(W ) commutes with the Γ-action and with
multiplication by L∞(Y ). Therefore, the image of an invariant finite rank L∞(Y )-
module in L2(X | Y ) under the conditional expectation operator E(· | W ) is an in-
variant finite rank L∞(Y )-module in L2(W | Y ). By Exercise 9.5, p : (X, τ)→ (Y, σ)
is a compact extension. By Theorem 11.3.3, the union of all invariant finite rank
L∞(Y )-modules in L2(X | Y ) is dense in L2(X), and thus the union of their images
under the conditional expectation map E(· | W ) is dense in L2(W ). An inspection
of the proof of Theorem 12.2.3 reveals that W is of the form Y ⋊ρ G/K for some
closed subgroup K ≤ G (for details, see the proof of Lemma 2 and the "References
and Further Comments" section in [HK18, Chapter 5]).

The Kronecker factor of W is also Z. By the first part of the proof of Proposition
13.3.3, Σinv(X ×X) = Σinv(W ×W ) (almost surely).

Proposition 13.4.5 implies that W = Y ⋊ψ L for some compact abelian group L.
It follows that G/K = L, and in particular, K is normal (for more details, see
the proof of Lemma 2 in [HK18, Chapter 5]). Since W is an abelian group skew-
product extension, (τψ)γ ◦ Vg = Vg ◦ (τψ)γ for all γ ∈ Γ and g ∈ G, where τψ
denotes the cocycle action on W = Y ⋊ψ L. Let f ∈ L2(W ) be an eigenfunction
with eigenvalue χ ∈ Γ∗. Then Uγ

τ (f ◦ Vg) = Vg(U
γ
τ f) = χγf ◦ Vg for all γ ∈ Γ and

g ∈ G. Thus, L2(Z) ⊆ L2(W ) is Vg-invariant for every g ∈ G. This implies that Vg
is an automorphism of the Kronecker system (Z, τc), i.e., a rotation on Z (see, e.g.,
Corollary 9 of [HK18, Chapter 4]).

By the first part of the proof of Proposition 13.3.3, Σinv(W ×W ) = π−1(ΣZ), where
π(w0, w1) = pkro(w0) · pkro(w1)

−1. Hence, for E ∈ Σinv(W ×W ), we have

(Vg × Vg)(E) = (Vg × Vg)(π−1(F )) = π−1(F ).

Thus, E is Vg × Vg-invariant for all g ∈ G.

For the next proposition, we need the following observation. Let p : (X, τ)→ (Y, σ)
be a factor map of concrete ergodic measure-preserving systems over Γ. By in-
duction, using the definition of the cubic measures and noting that Σinv(X

[k]) =
(p[k])−1(Σinv(Y

[k])), one can show that p[k] : X [k] → Y [k], given by p[k]((xε)ε∈[k]) =
(p(xε))ε∈[k] for (xε)ε∈[k] ∈ X [k], is a factor map of the respective kth cubic sys-
tems.

Proposition 14.1.2. Let (X, τ) be an ergodic concrete measure-preserving system
over Γ, let k ≥ 1, and let Zk be the kth characteristic factor of (X, τ). Then
Σinv(X

[k]) ⊆ (q
[k]
k )−1(ΣZ [k]

k
) modulo µ[k]-null sets, where qk : (X, τ) → Zk is the

factor map.
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Proof. Let fε ∈ L∞(X), ε ∈ [k], be such that E(fε|Zk) = 0 for at least one ε ∈ [k].
By the definition of µ[k+1] and the Gowers–Cauchy–Schwarz inequality (Proposition
13.4),

∫
X[k]

∣∣∣∣∣∣E
⊗
ε∈[k]

fε

∣∣∣∣∣∣(X [k])inv

∣∣∣∣∣∣
2

dµ[k] =

∫
X[k+1]

⊗
ε∈[k]

fε
⊗
ε∈[k]

f̄ε dµ
[k+1] = 0.

By a telescoping sum argument for arbitrary fε ∈ L∞(X), where ε ∈ [k], we have

E

⊗
ε∈[k]

fε

∣∣∣∣∣∣(X [k])inv

− E

⊗
ε∈[k]

UqkE(fε|Zk)

∣∣∣∣∣∣(X [k])inv

 = 0.

Since the elements
⊗

ε∈[k] fε ∈ L∞(X [k]) where fε ∈ L∞(X) for ε ∈ [k] span a dense
linear subspace of L2(X [k]), this implies that the fixed space of the system (X [k], τ [k])

is contained in the image of U
q
[k]
k
: L2(Z [k]

k ) → L2(X [k]). Switching to the level of
σ-algebras (cf. Section 2.2), this gives us the claim.

Theorem 14.1.3. Let (X, τ) be an ergodic measure-preserving system over Γ, and
let k ≥ 1. Then the kth characteristic factor Zk is a compact extension of the
(k − 1)th characteristic factor Zk−1.

Proof. The proof of this result relies on Furstenberg–Zimmer structure theory as
developed in Lectures 9-12 and properties of the cubic systems. A proof can be
found in [HK18, Lemma 2 §18.2] for Γ = Z which can be adapted to the general
case of arbitrary countable abelian groups.

An ergodic measure-preserving system (X, τ) over Γ is said to be of order k if (X, τ)
is isomorphic to its kth characteristic factor Zk.

Proposition 14.1.4. Let (X, τ) be an ergodic measure-preserving system over Γ of
order 2. Then (X, τ) is isomorphic to a group skew-product extension Z⋊ρG, where
(Z, τc) is the Kronecker factor of (X, τ) and G is a compact abelian group.

Proof. By Theorem 14.1.3 and Theorem 12.2.3, (X, τ) is isomorphic to a homoge-
neous skew-product extension Z ⋊ρ G/H, where (Z, τc) is the Kronecker factor of
(X, τ), and we have µX = mZ ⊗mG/H . By Fubini’s theorem, µ[1]

X = m
[1]
Z ×m(G/H)[1]

where (G/H)[1] := (G×G)/(H ×H).

It follows from (13.4),(13.5), and Fubini’s theorem that µ[1]
X is relatively independent

with respect to m
[1]
Z in the sense that for f, g ∈ L∞(X),∫
X[1]

f ⊙ g dµ[1]
X =

∫
Z[1]

E(f | Z)⊙ E(g | Z) dm[1]
Z . (14.1)
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Let ((m
[1]
Z )ω)ω∈Ω denote the ergodic decomposition of m[1]

Z (cf. Exercise 8.5), where
for notational convenience, we write Ω for the invariant factor of Z [1], and denote
its probability measure by P . By (14.1), for f, g ∈ L∞(X),∫

X[1]

f ⊙ g dµ[1]
X =

∫
Ω

∫
Z[1]

E(f | Z)⊙ E(g | Z) d(m[1]
Z )ω dP (ω)

=

∫
Ω

∫
X[1]

f ⊙ g d(µ[1]
X )ω dP (ω),

where (µ
[1]
X )ω := (m

[1]
Z )ω ⊗ m(G/H)[1] for almost every ω ∈ Ω. Thus, by Proposition

14.1.2, ((µ[1]
X )ω) is the ergodic decomposition of µ[1]

X . By definition, we also have

µ[2] =

∫
Ω

(µ
[1]
X )ω × (µ

[1]
X )ωdP (ω) (14.2)

For almost every ω ∈ Ω, consider the ergodic systems (Z [1], τ
[1]
c ) equipped with

the measure (m
[1]
Z )ω, and consider the ergodic homogeneous skew-product extension

Z [1] ⋊ρ[1] (G/H)[1] equipped with the measure (µ
[1]
X )ω.

Let E ⊆ X [2] be a τ [2]-invariant measurable set for µ[2]
X , let g ∈ G, and let ε = 0. By

the decomposition in (14.2), µ[1]
X )ω × µ[1]

X )ω((τ
[2])−1(E)∆E) = 0 for almost every ω,

recall that ∆ denotes set symmetric difference. Thus E is invariant in the product
of X [1], equipped with the measure (µ

[1]
X )ω, with itself. On (G/H)[2] := G[2]/H [2],

we can define the translation g(ε) × g(ε) by translating (g00H, g01H, g10H, g11H) to
(gg00H, g01H, gg10H, g11H), and denote by V

(ε)
g × V

(ε)
g the corresponding vertical

translation on the product of Z [1] × (G/H)[1] with itself. Since this system is the
ergodic homogeneous skew-product extension Z [1] ⋊ρ[1] (G/H)[1] equipped with the
measure (µ

[1]
X )ω, we can apply 14.1.1, to have that E is V (ε)

g × V (ε)
g -invariant up to

(µ
[1]
X )ω × µ

[1]
X )ω-null sets for almost every ω. By (14.2), E is V (ε)

g × V
(ε)
g -invariant

up to µ
[2]
X -null sets. Now V

(ε)
g × V

(ε)
g corresponds to a transformation V α

g of X [2],
where α ⊆ [2] is an edge. Similarly, this holds when replacing ε = 0 by ε = 1. Since
µ
[2]
X is preserved by the facet group F2 by Proposition 13.2.2 and by symmetry (see

13.2.1), it follows that V α
g acts trivially on the invariant factor of X [2] for any edge

α ⊆ [2].

Let ε ∈ [2], g, h ∈ G, and α, β be two edges of [2] such that α ∩ β = {ε}. By
the previous, V α

g , V
β
h are µ

[2]
X -preserving transformations and act trivially on the

invariant factor of X [2]. Thus, the commutator [V α
g , V

β
h ] = V ε

[g,h] also preserves the
measure µ[2]

X , where V ε
[g,h] is the vertical translate by [g, h] at the vertex ε in X [2].

By symmetry, V ε
[g,h] preserves the measure µ

[2]
X for every ε ∈ [2]. Thus, for any
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f ∈ L∞(X),

∥f ◦ V[g,h] − f∥42 =
∫
X[2]

⊗
ε∈[2]

C |ε|(f ◦ V[g,h] − f) dµ[2]
X = 0.

By (13.2), f = f ◦ V[g,h], and therefore V[g,h] acts trivially on X. But this can only
be the case if [g, h] = 1, and thus G is abelian.

Next, we will show that Z2 is an abelian skew-product extension of Z1 by a special
type of cocycles:

Definition 14.1.5 (Order of cocycles). Let (Y, σ) be a concrete ergodic measure-
preserving system over Γ, let ρ : Γ × Y → G be a cocycle, where G is a compact
abelian group, and let k ≥ 1 be an integer. We denote by ∆[k]ρ : Γ× Y [k] → G the
cocycle defined by

(∆[k]ρ)γ(y) :=
∏
ε∈[k]

ργ(yε)
(−1)|ε| for y = (yε)ε∈[k] ∈ Y [k] and γ ∈ Γ,

where |ε| =
∑k

i=1 εi, as before.

A cocycle ρ is said to be of type k if ∆[k]ρ is a coboundary over the cubic system
Y [k].

We need the following lemma before proving that the cocycle ρ appearing in the
representation of the Conze–Lesigne factor in Proposition 14.1.4 is of order 2.

Lemma 14.1.6. Let (Y, σ) be a concrete measure-preserving system over Γ, and let
ρ : Γ × Y → T be a cocycle, where T is the torus. Let ((µY )ω)ω∈Ω be the ergodic
decomposition of µY (cf. Exercise 8.5). Then

C = {ω ∈ Ω: ρ coboundary of (Y, σ) with measure (µY )ω}

is a measurable set, and the cocycle ρ is a coboundary of (Y, σ) if and only C has
full measure.

Proof. For a proof, see [HK18, Lemma 11 §5.3]. The proof provided there is for
systems over Γ = Z; however, the same argument works for systems over arbitrary
countable abelian Γ, provided one replaces Birkhoff’s pointwise ergodic theorem
with a suitable generalization, such as the one given in [Lin01].

Proposition 14.1.7. Let (X, τ) be an ergodic measure-preserving system over Γ of
order 2 and let X = Z ⋊ρ G be the its abelian skew-product representation given by
Proposition 14.1.4. Then the cocycle ρ is of type 2.
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Proof. By Theorem 13.4.1, it suffices to show that ξ ◦∆[2]ρ is a coboundary of Z [2]

for all ξ ∈ G′. Fix ξ ∈ G′.

Define ψ : Z ×G→ T by ψ(z, u) = ξ(u) and consider

Ψ :=
⊗
ε∈[2]

C |ε|ψ ∈ L∞(X [2],T).

Let J : L2(Z [2]) → L2(X [2]) be the operator defined by J(f) = Ψ · f ◦ π[2], where
π : X → Z is the first-coordinate projection. Since Ψ ◦ (τ [2])γ = Ψ · ξ(∆[2]ργ) ◦ π[2],
the range Hξ of J is a closed Uτ [2]-invariant subspace of L2(X [2]). Therefore, by the
mean ergodic theorem, Hξ contains Eµ[2](J(f) | (X [2])inv) for all f ∈ L2(Z [2]).

In particular, since Ψ = J(1) ∈ Hξ, there exists f ∈ L2(Z [2]) such that J(f) =
E(Ψ | (X [2])inv). Since X is a system of order 2, by (13.2),

∥E(Ψ | (X [2])inv)∥ = ∥ψ∥83 ̸= 0.

Thus, there exists f ̸= 0 such that J(f) is Uτ [2]-invariant. By the definition of J ,
this implies that for all γ ∈ Γ,

ξ(∆[2]ργ) · f ◦ (τ [2]c )γ = f.

Thus, the set E = {|f | ≠ 0} is τc-invariant and m
[2]
Z (E) > 0.

Let ((m
[2]
Z )ω)ω∈Ω be the ergodic decomposition of m[2]

Z . By Proposition 14.1.6, the
set C of ω such that ξ ◦∆[2](ρ) is a coboundary of (Z [2], (τc)

[2]) equipped with the
measure (m

[2]
Z )ω is measurable. Since m

[2]
Z (E) > 0, the measurable set C has positive

measure.

We show that C is invariant under the group F2 of facet transformations of Z [2]. Let
α ⊆ [2] be an edge, γ0 ∈ Γ, and (τc)

α
γ0
∈ F2. Suppose ω ∈ C such that (τc)αγ0(ω) ∈ C.

Then there exists a measurable function φ : Z [2] → T such that

ξ ◦∆[2](ργ) = φ ◦ ((τc)γ)[2] · φ−1

holds (m
[2]
Z )(τc)αγ0 (ω)-almost everywhere for all γ ∈ Γ.

Rewriting this coboundary equation, we have

ξ ◦∆[2](ργ) ◦ (τc)αγ0 = (φ ◦ (τc)αγ0) ◦ ((τc)γ)
[2] · (φ ◦ (τc)αγ0)

−1

(m
[2]
Z )ω-almost everywhere for all γ ∈ Γ. By the cocycle property,

∏
ε∈α

ργ0((τc)γyε)
(−1)|ε| ·

(∏
ε∈α

ργ0(yε)
(−1)|ε|

)−1

= ((∆[2](ρ)γ ◦ ((τc)γ0)α) · (∆[2](ρ)γ)
−1)(y)
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for (m
[2]
Z )ω-almost every y = (yε)ε∈[2] ∈ Z [2] and for all γ ∈ Γ. Combining this

with the coboundary equation above, we find that ξ ◦ ∆[2](ρ) is a coboundary of
(Z [2], (τc)

[2]) equipped with the measure (m
[2]
Z )ω.

Since the action of F2 on Σinv(Z
[2]) is ergodic by Proposition 13.2.2, we conclude

that C has full measure. By Lemma 14.1.6, ξ ◦∆[2](ρ) is a coboundary of Z [2].

14.2 The Structure Theorem for Conze–Lesigne Sys-
tems

Let (X, τ) be a concrete ergodic measure-preserving system over Γ of order 2. So
far, we have represented (X, τ) as a skew-product system Z⋊ρG, where (Z, τc) is the
Kronecker factor of (X, τ), represented as a rotational system on a compact abelian
group Z. Here, G is another compact metrizable abelian group, and ρ : Z × Γ→ G
is a cocycle of type 2. In this section, we will use these properties to deduce a
structure theorem for systems of order 2. We provide an outline of the arguments,
while complete details can be found in [JST24].

We begin by reducing to skew-product systems of the form Z ⋊ρ G, where G is a
compact abelian Lie group, i.e., a group of the form Td × F , where d ≥ 0 and F is
a finite abelian group.

By the Gleason–Yamabe theorem, any compact abelian metrizable group G can be
expressed as the inverse limit of a countable inverse system (Gn) of compact abelian
Lie groups, with projections πn : G→ Gn. This enables us to view the order 2 system
X = Z ⋊ρ G as the inverse limit of the family of order 2 systems Xn = Z ⋊ρn Gn,
where ρn = πn ◦ ρ.
We have the following structure theorem after this reduction.

Theorem 14.2.1. Let (X, τ) be a concrete ergodic measure-preserving system over
Γ of order 2, represented as a skew-product system Z ⋊ρ G, where (Z, τc) is the
Kronecker factor of (X, τ), represented as a rotational system on a compact abelian
group Z, G is a compact abelian Lie group, and ρ : Z×Γ→ G is a cocycle of type 2.
Then there exists a locally compact Polish group1 G of nilpotency class2 2, a lattice3

1A Polish group is a topological group whose topology is separable and metrizable by a
complete metric. For example, (Rn,+) is a Polish group.

2A group is nilpotent if it admits a series of normal subgroups G0 = G and Gi+1 = [Gi, G] for
i ≥ 0, where [H,K] denotes the subgroup of G generated by all commutators [h, k] := h−1k−1hk for
h ∈ H, k ∈ K, such that Gn = {1} for some n ≥ 1. The smallest such n is called the nilpotency
class of G. For example, a group is nilpotent of nilpotency class 2 if its commutator subgroup
[G,G] is abelian.

3A closed subgroup H of a locally compact group K is called a lattice if it is discrete and the
quotient space K/H is compact. For example, the integers Z form a lattice subgroup of the reals
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Λ, and a group homomorphism φ : Γ→ G such that the translation system (G/Λ, τφ),
where the underlying probability space is the homogeneous space G/Λ equipped with
a translation-invariant Borel probability measure, which we call the Haar measure
of G/Λ, and with the action τφγ (gΛ) := (φ(γ) · g)Λ, is isomorphic to (X, τ).

We provide an example of a translational system on a homogeneous space of a locally
compact 2-nilpotent Polish group.

Example 14.2.2. Let

G =


1 a c
0 1 b
0 0 1

 : a, b, c ∈ R


be the real Heisenberg group, endowed with the group law of matrix multiplication
as inherited from its definition as a subgroup of 3 × 3 matrices. As a lattice, we
consider

Λ =


1 a c
0 1 b
0 0 1

 : a, b, c ∈ Z

 .

We equip G with the 3-dimensional Lebesgue measure, which preserves the group
law. This measure induces a pushforward measure on the homogeneous space G/Λ
that is translation-invariant.

Next, we define a group homomorphism φ : Z → G by sending the generator 1 ∈ Z
to the matrix 1 a 0

0 1 b
0 0 1


where a, b are linearly independent over Q.

This construction induces an ergodic measure-preserving system (G/Λ, τφ) over Γ =
Z, which is a system of order 2. Verifying these properties are left as an exercise for
the interested reader.

From the previous reduction, we then obtain the following structure theorem:

Theorem 14.2.3 (Structure theorem for Conze–Lesigne systems). Let (X, τ) be an
arbitrary concrete ergodic measure-preserving system over Γ of order 2. Then (X, τ)
is isomorphic to an inverse limit of translational systems formed on locally compact
Polish groups of nilpotency class 2.

Remark 14.2.4. The difference in the structure theorem for the Conze–Lesigne
factor compared to the Halmos–von Neumann representation theorem for the Kro-

R.
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necker factor lies in the type of systems considered: instead of rotational systems
on compact abelian groups (nilpotent groups of nilpotency class 1), as in Theorem
6.2.6, we now focus on inverse limits of translational systems on homogeneous spaces
of nilpotent groups of nilpotency class 2. Similarly, the structure theorem for the
Kronecker factor in Theorem 13.3.1 considers inverse limits of rotational systems on
compact abelian Lie groups.

The advantage of working with compact abelian Lie groups is the following impor-
tant result that provides a “linearization” for cocycles of order 2:

Theorem 14.2.5. Let (Z, τc) be an ergodic rotational system over Γ, let G be a
compact abelian Lie group, and let ρ : Γ × Z → G be a cocycle of type 2. Then for
every z ∈ Z, the derivative map ∂zρ : Γ× Z → G, defined by

∂zργ(w) = ργ(z · w) · ργ(w)−1

for almost every w ∈ Z and each γ ∈ Γ, is a quasi-coboundary. That is, there exist
a group homomorphism ξz : Γ → G and a measurable function fz such that for all
γ ∈ Γ and almost every w,

(∂zρ)γ(w) = ξz(γ) · fz((τc)γ(w)) · fz(w)−1.

Proof. A proof of this theorem in the generality of arbitrary countable discrete
abelian groups Γ is given in [JST24, Theorem 1.13].

Now we sketch the proof of Theorem 14.2.1, beginning with the construction of the
group G.
Construction of G:
The group G consists of all pairs (z, F ) ∈ Z × L∞(Z,G), where where L∞(Z,G)
denotes the space of equivalence classes of measurable maps from Z to G, such that
there exists a group homomorphism ξ : Γ → G satisfying the following condition:
for all γ ∈ Γ and almost every w ∈ Z,

(∂zργ)(w) = F (c(γ) · w) · F (w)−1 · ξ(γ).

By Fubini’s theorem, each (z, F ) ∈ G induces a measure-preserving transformation
τz,F on Z ×G, defined as

τz,F (s, u) = (s · z, F (s) · u),

where s ∈ Z, u ∈ G, and F (s) is evaluated using a representative of F in L∞(Z,G).

The group law in G is determined by the composition of such transformations:

(z1, F1) · (z2, F2) = (z1 · z2, F1 · F2 ◦ Vz1),
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where F ◦Vz(w) := F (z ·w) for w, z ∈ Z. The inverse of (z, F ) in this group is given
by

(z, F )−1 = (z−1, F−1 ◦ Vz−1).

G is 2-nilpotent:

The commutator subgroup [G,G] is identified with the subgroup of pairs (1, F ),
where F ∈ L∞(Z,G) satisfies the following condition: there exists a group homo-
morphism ξ : Γ→ G such that for all γ ∈ Γ and almost every w ∈ Z,

F ◦ (τc)γ = ξ(γ) · F. (14.3)

We refer to a function F ∈ L∞(Z,G) satisfying (14.3) as a G-valued eigenfunction
with eigenvalue ξ of the rotational system (Z, τc). Denote the collection of all such
eigenfunctions by E(Z,G). The commutator subgroup [G,G] can then be identified
as {1} × E(Z,G).

Since {1}×E(Z,G) lies in the center of G, it follows that G is nilpotent of nilpotency
class 2.

G is Polish and locally compact:

Denoting by Homc(Z,G) the set of continuous group homomorphisms from Z to G,
one can show that E(Z,G) is isomorphic to G× Homc(Z,G) as groups.

Equip Homc(Z,G) with the discrete topology. Consequently, G × Homc(Z,G) be-
comes a locally compact abelian group, and using the aforementioned isomorphism,
we equip E(Z,G) with the structure of a locally compact abelian group.

Next, we endow G with a topology. By Koopmanization, we identify G as a subgroup
of the unitary group of L2(Z ×G). Using this identification, G is equipped with the
strong operator topology. Since L2(Z ×G) is separable, G is a Polish group.

AsG has a countable Pontryagin dual (because it is metrizable), it admits a translation-
invariant metric d. Using this metric d, we equip L∞(Z,G) with the topology of
convergence in measure, which is metrizable by the metric

∫
Z
min{1, d(F1, F2)}dmZ ,

since Z is separable. The restriction of the resulting product topology on Z ×
L∞(Z,G) to G coincides with the strong operator topology, and its restriction to
{1}×E(Z,G) coincides with the locally compact topology introduced on E(Z,G).

To show that G is locally compact, let π : G → Z be the projection onto the first
coordinate. From Theorem 14.2.5, we know that π is surjective. Since π is also a con-
tinuous homomorphism of Polish groups, it is an open map (see, e.g., [BK96]).

The kernel ker(π) ⊆ {1} × E(Z,G) is closed, and since E(Z;G) is locally compact,
it follows that ker(π) is locally compact. Using the fundamental theorem on ho-
momorphisms of topological groups (see, e.g., [HR79, Theorem 5.25]), we conclude
that G is locally compact.
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Transitivity of the action of G on Z ×G:

By Theorem 14.2.5, G contains a transformation (z, Fz) for each z ∈ Z. Since G
also contains (1, g) for each g ∈ G (where g is identified with a constant function),
G acts transitively4 on Z ×G.

Stabilizer of (1, 1):

The stabilizer of the point (1, 1) in G is given by:

Λ = {1} × Hom(Z,G),

which is a discrete subgroup. To see this, consider (z, F ) ∈ G. If (z, F ) stabilizes
(1, 1), then z = 1 and (1, F ) ∈ ker(π). Since ker(π) ⊆ {1} × E(Z;G), there exists
a group homomorphism ξ : Γ → G such that F is a G-valued eigenfunction with
eigenvalue ξ. Moreover, since (z, F ) stabilizes (1, 1), F (1) = 1. We deduce that
F : Z → G is a homomorphism.

Homeomorphism between G/Λ and Z ×G:

The quotient map G → G/Λ is open, as it is a continuous surjection of Polish groups
(see [BK96]). Since G acts transitively on Z × G, G/Λ is homeomorphic to Z × G
(see [MZ55]). Let j : G/Λ→ Z ×G denote this homeomorphism.

Translation Action and Haar Measure:

For every (z, F ) ∈ G, the map j−1 ◦ τ(z,F ) ◦ j is a left translation on G/Λ. Since
τ(z,F ) is measure-preserving on Z × G, the pushforward measure j−1

∗ (mZ ⊗ mG) is
invariant under the translation action of G on G/Λ. As G is locally compact and
nilpotent, it is unimodular, and hence j−1

∗ (mZ ⊗mG) must coincide with the Haar
measure mG/Λ of G/Λ (see [Nac65]).

Embedding of Γ into G:
For any γ1, γ2 ∈ Γ, the cocycle equation implies that for almost every z ∈ Z,

ργ1(z) · (ργ((τc)γ2(z)))−1 = ργ2(z) · (ργ((τc)γ1(z)))−1.

This shows that (c(γ), ργ) ∈ G (with the choice of ξ ≡ 1) for all γ ∈ Γ. Using the
translation action described above, we define a measure-preserving action of Γ on
G/Λ, equipped with the Haar measure mG/Λ.

This construction completes the proof of the structure theorem for Conze—Lesigne
systems.

4Since the G-action on Z × G is only defined almost surely and not continuously, a priori we
cannot speak of transitivity or the stabilizer of a point, as in the subsequent step. However, these
technical problems can be resolved by working with a suitable topological model of (X, τ); see
[JST24, Theorem A.4 and Lemma A.6] for details. Henceforth, we assume that the G-action on
Z ×G is defined everywhere and is continuous, and all ensuing identities hold everywhere.
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14.3 Comments and Further Reading
The fact that systems of order k are abelian skew-product extensions of their (k−1)th
characteristic factor was established independently in the Γ = Z case by Host and
Kra [HK05] and Ziegler [Zie07], albeit using slightly different definitions of these
factors, which were later shown to be equivalent by Leibman. The arguments of Host
and Kra adapt easily to the general case of arbitrary Γ, as noted in the literature
(see, e.g., [BTZ10, JST24]). In this lecture, we provided a proof for general countable
abelian Γ in the case of systems of order 2.

The structure of the second characteristic factor, or systems of order 2, was studied
in the Γ = Z case by Conze and Lesigne [CL88a], [CL88b] (see also [Rud95], [Mei90],
[FW96b], [HK01], [HK02]). In this setting, a more precise structure theorem can be
proven, stating that systems of order 2 are inverse limits of nilsystems, which are
translational systems formed on nilmanifolds - homogeneous spaces of nilpotent Lie
groups. Unfortunately, when Γ is not finitely generated, there are counterexamples
showing that this stronger version of the structure theorem fails; see the example
presented after [Sha24, Conjecture 2.14] (in the discussion of [Sha24, Theorem 4.3]).
The general structure theorem for Conze–Lesigne systems (Theorem 14.2.1) was
recently established in [JST24].



Lecture 15

In this final lecture of ISem28, we first provide a brief and condensed overview of
the current state of research in Host–Kra structure theory and its application to
inverse Gowers theory. In the second part, we offer an anecdotal introduction to the
corresponding structure theory for topological dynamical systems.

15.1 Host–Kra theory: What else is known?
Let k ≥ 1 be an integer, and let (X, τ) be a concrete ergodic measure-preserving
system over Γ of order k. One can generalize the arguments in Proposition 14.1.4 and
Proposition 14.1.7 to show that (X, τ) is isomorphic to a group skew-product system
Zk−1 ⋊ρ G, where Zk−1 is the subsystem of (X, τ) of order k − 1, G is a compact
metrizable abelian group, and ρ is a cocycle of type k. This result is proved in
[HK18, Chapter 18] for Γ = Z, but the proof can be adapted to the general case of
arbitrary Γ, as has been noted in the literature, see, e.g., [BTZ10, JST24].

Combining these representations for all k ≥ 2, we obtain that (X, τ) is isomorphic
to a chain of skew-product extensions

G1 ⋊ρ1 G2 ⋊ρ2 · · ·⋊ρk−1
Gk

where all the Gi are compact metrizable abelian groups, the cocycle ρi is of type
i + 1 for all i, and the extensions are constructed from left to right. The groups
Gi appearing in this representation are called the structure groups of the system
(X, τ).

There is a close connection between the topological and algebraic properties of the
acting group Γ and the structure groups Gi:

• If Γ = Z, Host and Kra established that all Gi for i ≥ 2 are connected abelian
groups for all finite-order systems, see [HK18, §18.5].

• If Γ is anm-torsion group1, then all the structure groups of finite-order systems
1That is, γm = 0 for all γ ∈ Γ.
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are totally disconnected and m-torsion, see [JST23, Theorem 1.4].

In general, we lack a more systematic way to relate the properties of the structure
groups to the properties of the acting group, which is important for developing struc-
ture theorems. Notice that the previous examples suggest an interplay with Pontrya-
gin duality between compact and discrete groups, where there is a duality between
torsion-free (resp. torsion) groups and connectedness (resp. total disconnected-
ness). Thus, the previous examples may be seen as a reflection of a higher-order
form of Pontryagin duality. Discovering such a duality and its implications remains
an intriguing open problem in the structure theory of finite-order systems.

As far as structure theorems are concerned, the only case where a complete and
satisfactory answer has been provided is the case Γ = Z, due to the independent
work of Host and Kra [HK05, HK18] and Ziegler [Zie07]:

Theorem 15.1.1 (Structure theorem for finite order Z-systems). Let (X, τ) be a
concrete ergodic measure-preserving system of order k for some integer k ≥ 1 over
Γ = Z. Then (X, τ) is isomorphic to an inverse limit of translational systems formed
on k-nilpotent Lie groups.

The Conze–Lesigne structure theorem (Theorem 14.2.1) is the only result that holds
for arbitrary countable Γ, but it applies only to systems of order 2. Partial results
for other specific choices of Γ and general finite-order systems can be found in,
e.g., [BTZ10, Sha24, JST23, CS23]. Establishing a general structure theorem for
arbitrary countable Γ and systems of arbitrary finite order is a very challenging but
important open problem.

15.1.1 Application to Inverse Gowers Theory

An area where Host–Kra structure theory has found applications in recent years
is the inverse theory for the Gowers norms, which forms the core of the emerging
field of higher-order Fourier analysis (cf. [Tao12]). This field is particularly relevant
for various problems in additive combinatorics and analytic number theory, such as
obtaining quantitative bounds in Szemerédi’s theorem or its polynomial and multidi-
mensional generalizations (see, e.g., [PP24, LSS24]), understanding the asymptotics
of primes in arithmetic progressions [GT10], and addressing questions related to
Sarnak’s conjecture [MRT+23]. A central open problem in the inverse theory for the
Gowers norms is Conjecture 15.1.2 below.

Let G be a finite abelian group and k ≥ 1. The k-th Gowers uniformity norm
of a complex function f : G→ C is defined by the formula

∥f∥Uk(G) := (Ex,h1,...,hk∈G∆h1 . . .∆hkf(x))
1

2k ,

where Ex∈A = 1
|A|
∑

x∈A and ∆hf(x) := f(x+ h) · f(x).
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We have the following conjecture from [JT23c], where we refer to [JT23c] for the
theory of polynomial maps on filtered groups.

Conjecture 15.1.2 (Inverse theorem for Uk+1(G)). Let G be a finite abelian group,
δ > 0, k ≥ 0, and let f : G→ C be a 1-bounded function with ∥f∥Uk+1(G) ≥ δ. Then
there is a degree k filtered nilmanifold H/Λ, drawn from some finite collection of
such nilmanifolds that depends only on k, δ but not on G (and each such nilmani-
fold is endowed arbitrarily with a smooth Riemannian metric), a Lipschitz function
F : H/Λ → C of Lipschitz norm Oδ,k(1), and a polynomial map g : G → H/Λ such
that

|Ex∈Gf(x)F (g(x))| ≫δ,k 1.

Conjecture 15.1.2 has been verified in several important special cases. The case
where we restrict to the family of cyclic groups F = (Z/pnZ)n→∞, where pn denotes
the nth prime number, was established for arbitrary k in a breakthrough result by
Green, Tao, and Ziegler [GTZ12]. The case F = (Fn)n→∞, where F denotes a fixed
finite field, was established for arbitrary k and F by Bergelson, Tao, and Ziegler in
a series of papers [BTZ10, TZ10, TZ12], where they develop and use among other
tools Host–Kra structure theory for Fω-actions.

In [JT23c], Tao and the second author introduced an approach to Conjecture 15.1.2
that relates it to Host–Kra structure theory for Zω-systems. This approach can
be outlined as follows: Let F be a family of finite abelian groups. In [JT23c], a
correspondence principle was introduced that connects Conjecture 15.1.2 for F to
the algebraic classification of characteristic factors of an ergodic Zω-system (X,T )
modeled on the ultraproduct group of the family F , where the order of the charac-
teristic factor corresponds to the degree k of the Gowers norm. In the same work,
the Conze–Lesigne structure theorem (Theorem 14.2.1) was used to prove Conjec-
ture 15.1.2 in the special case k = 2. Conjecture 15.1.2 for k ≥ 3 and arbitrary finite
abelian groups is widely open. For some recent partial progress in certain special
cases, see, e.g., [JST23, CGSS23].

15.2 A Glimpse at Topological Structure Theory

In our lectures we have developed the structure theory of measure-preserving sys-
tems and discussed some applications. A natural question is to ask for similar
structure results in the world of topological dynamics, i.e., the study of continuous
transformations on compact spaces. In this final section of our notes, let us briefly
outline some of the topological structure theory.

For this exposition, we restrict (as usual) to systems (K, τ) given as actions of a
countable (discrete) abelian group Γ on a compact metric space K. A morphism
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q : (K, τ) → (L, σ) between such topological dynamical systems is given by a con-
tinuous map q : K → L such that q ◦ τγ = σγ ◦ q, i.e., the diagram

K
τγ //

q
��

K

q
��

L
σγ // L

commutes for all γ ∈ Γ. It is

(i) a factor map or extension if q is surjective, and

(ii) an isomorphism if q is bijective (which implies that q−1 also defines a mor-
phism of topological dynamical systems).

Structured Systems. What does it mean for such a topological dynamical system
(K, τ) to be structured? One possible answer: We demand that there is no “sensitive
dependence on initial conditions”, i.e., if two points x, y ∈ K are close to each other,
then their orbit points τγ(x) and τγ(y) should also be close for all γ ∈ Γ. More
precisely, given any ε > 0, we find some δ > 0 such that the following implication
holds.

• If (x, y) ∈ K ×K satisfies d(x, y) < δ, then d(τγ(x), τγ(y)) < ε for all γ ∈ Γ.

This simply means that the family of maps {τγ | γ ∈ Γ} ⊆ Homeo(K) is (uniformly)
equicontinuous.2

Definition 15.2.1. A topological dynamical system (K, τ) is called equicontinu-
ous if the family of maps {τγ | γ ∈ Γ} is equicontinuous.

The following rotation system is a typical example.

Example 15.2.2. For Γ = Z consider the rotation (T, la) on the torus defined by
la : T → T, z 7→ az for some a ∈ T (cf. Example 6.2.2). Then la preserves the
Euclidean metric, which implies that the system (T, la) is equicontinuous.

Another idea would be to use a functional analytic definition of structured systems
via discrete spectrum (see Definition 6.2.1). To do so, we can for each topologi-
cal dynamical system (K, τ), just as for measure-preserving systems, consider the
Koopman representation

Uτ : Γ→ L (C(K)), γ 7→ Uτ−1
γ

where Uτ−1
γ
f := f ◦ τ−1

γ for f ∈ C(K) and γ ∈ Γ. Since Γ is abelian, we then assume
that the eigenspaces with respect to this representation generate C(K).

2Since K is compact, every equicontinuous family of maps is automatically uniformly equicon-
tinuous.
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Definition 15.2.3. A topological dynamical system (K, τ) has discrete spectrum
if C(K) = lin

⋃
χ∈Γ∗ ker(χ− Uτ ) where

ker(χ− Uτ ) := {f ∈ C(K) | Uτγf = χ(γ)f for all γ ∈ Γ}

is the eigenspace associated with a character χ ∈ Γ∗.

Once again we obtain rotation systems as examples.

Example 15.2.4. Let c : Γ→ G be a group homomorphism to any compact abelian
metric group G. Consider the induced rotation system system (G, τc) via τc : Γ →
Homeo(G), γ 7→ lc(γ) from Example 6.2.3 (where lx : G → G, y 7→ xy). Using
that the continuous characters χ ∈ G′ span a dense linear subspace of C(G) by
Proposition 6.1.19 and Theorem 6.1.18, one can check that the topological dynamical
system (G, τc) has discrete spectrum.

It turns out that both previous definitions of structured topological dynamical sys-
tems – via equicontinuity and discrete spectrum – are equivalent. To show this, it is
helpful to consider yet another characterization based on the following topological
algebraic concept introduced by Robert Ellis (see [Ell60]). For a compact space
K equip the set of all self-maps KK = {τ : K → K} with the product topology
(i.e., the topology of pointwise convergence). By Tychonoff’s theorem (see Theorem
3.2.4) this is a compact space.

Proposition and Definition 15.2.5. For a topological dynamical system (K, τ)
the closure

E(K, τ) := {τγ | γ ∈ Γ} ⊆ KK

in KK is a semigroup when equipped with the composition of maps, i.e., ϑ ◦ ϱ ∈
E(K, τ) for all ϑ, ϱ ∈ E(K, τ). We call E(K, τ) the Ellis semigroup of (K, τ).

We refer to [Aus88, Chapter 3] for a proof and more details, but highlight that in
general E(K, τ) may contain discontinuous maps. Furthermore, the multiplication
(given by composition) on E(K, τ) is generally not jointly continuous. However,
E(K, τ) is still a compact right-topological semigroup, i.e., for a fixed element
ϱ ∈ E(K, τ) the right multiplication

E(K, τ)→ E(K, τ), ϑ 7→ ϑ ◦ ϱ

is continuous. One can apply the structure theory of such semigroups (see, e.g.,
[Rup84], [BJM89]) to the Ellis semigroup to study the topological dynamical system
(K, τ).

We compute the Ellis semigroup in the situation of Example 15.2.2.
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Example 15.2.6. Consider the torus rotation (T, la) for a ∈ T. If ak = 1 for some
k ∈ N, then {lna | n ∈ Z} = {lan | n = 0, . . . , k − 1} ⊆ TT is discrete, hence closed,
and we therefore have

E(T, la) = {lan | n = 0, . . . , k − 1}.

On the other hand, if a is not a root of unity, then {an | n ∈ Z} is dense in T by
Kronecker’s Theorem (see Theorem 6.1.22), and this implies

E(T, la) = {lb | b ∈ T} ⊆ TT,

i.e., the Ellis semigroup consists of all rotations lb : T→ T, z 7→ bz for b ∈ T in this
case.

In this example the Ellis semigroup is actually a compact toplogical abelian group
consisting of homeomorphisms. With the help of the Arzelà–Ascoli theorem (see,
e.g., [Sin19, Theorem 11.3.12]), one can check that this is still the case for all equicon-
tinuous systems (see again [Aus88, Chapter 3] for the details). The representation
theory of compact groups from Section 6.1 (and some further arguments then yield
the following satisfying characterizations of structured systems (see, e.g., [Aus88,
Chapters 3 and 4] and [HK23, Theorem 1.11])3.

Theorem 15.2.7. For a topological dynamical system (K, τ) the following assertions
are equivalent.

(a) (K, τ) is equicontinuous.

(b) E(K, τ) is an abelian metrizable compact topological group of homeomorphisms.

(c) (K, τ) has discrete spectrum.

As a corollary, we obtain a version of the Halmos–von Neumann representation
theorem (see Theorem 6.2.6) for topological dynamical systems (see, e.g., [Aus88,
Theorem 3.6], [Wal75, Theorem 5.8], [DNP87, Chapter VIII], and [HK23, Theorem
4.4 (iii)]). Recall the notion of minimal systems from Definition 10.2.1. One can
readily check that every rotation system (G, τc) defined by a group homomorphism
c : Γ→ G with dense range to an abelian metrizable compact topological group G is
minimal, and it has discrete spectrum by Example 15.2.4. We obtain the following
converse result.

Theorem 15.2.8 (Topological Halmos–von Neumann Representation Theorem).
Let (K, τ) be a minimal topological dynamical system with discrete spectrum. Then
there is a group homomorphism c : Γ → G with dense range to a compact metric
abelian group G such that (K, τ) is isomorphic to the rotation system (G, τc).

3The quoted sources deal with the general case without countability and metrizability assump-
tions. However, in our setting we obtain metrizable groups via [Aus88, page 52] since the topology
of uniform convergence on the space of homeomorphisms Homeo(K) is metrizable.
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Proof. By Theorem 15.2.7 we obtain that G := E(K, τ) is an abelian metrizable
compact topological group of homeomorphisms. The map c : Γ → G, γ 7→ τγ is a
group homomorphism with dense range. Now pick any point x0 ∈ K. Then the
evaluation map

q : G→ K, ϑ 7→ ϑ(x0)

is continuous, and one can readily check that q ◦ (τc)γ = τγ ◦ q for each γ ∈ Γ, i.e.,
q is a morphism of topological dynamical systems.

Since q(G) is a non-empty, compact and invariant subset ofK, and (K, τ) is minimal,
we obtain that q is surjective. To see that it is injective, take ϑ1, ϑ2 ∈ G with
ϑ1(x0) = ϑ2(x0). Then ϑ := ϑ−1

2 ◦ ϑ1 ∈ G satisfies ϑ(x0) = x0, and thus also

ϑ(q(ϱ)) = ϑ(ϱ(x0)) = ϱ(ϑ(x0)) = ϱ(x0) = q(ϱ)

since G is abelian. As q is surjective, this implies ϑ = idK , hence ϑ1 = ϑ2.

Remark 15.2.9. One can prove topological versions of all aspects of the Halmos–
von Neumann theorem classification result (see, e.g., [Wal75, Theorems 5.8 and 5.9],
[DNP87, Chapter VIII.3], and [HK23, Theorem 4.4]), even without any countability
and metrizability assumptions. Via the concept of topological models discussed in
the “Comments and Further Reading Section” of Lecture 8, these topological results
can be used to give a different proof of the ergodic theoretic statements (Theorems
6.2.6, 6.2.7, and 6.2.8), see, e.g., [NW72], [DNP87, Chapter VIII] and [HK23, Section
3].

Furstenberg Structure Theory. Can we also rebuild a topological dynamical
system (K, τ) from a tower of suitable extensions similarly to Theorem 9.1.12 for
measure-preserving systems? The topological theory is somewhat more intricate.
However, Furstenberg actually showed a topological structure theorem before his
ergodic theoretic result (see [Fur63]). It deals with minimal systems which are
distal.

Definition 15.2.10. A topological dynamical system (K, τ) is called distal if
infγ∈Γ d(τγ(x), τγ(y)) > 0 for all x, y ∈ K with x ̸= y.

Thus, loosely speaking, a system is distal if two distinct points cannot come close
to each other “in the long run”. One can check that every equicontinuous system
is distal (see [Aus88, beginning of Chapter 5]), but the converse does not hold as
shown by the following example.

Example 15.2.11. For Γ = Z and a ∈ T, which is not a root of unity, consider the
skew-rotation (T2, τ) from Example 7.2.6 given by τ : T2 → T2, (x, y) 7→ (ax, xy).
Then (T2, τ) is a minimal distal system which is not equicontinuous, see (see [Aus88,
page 75 of Chapter 5]).
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Once again there is a nice characterization in terms of the Ellis semigroup (see
[Aus88, Theorem 5.6]).

Theorem 15.2.12. For a topological dynamical system (K, τ) the following asser-
tions are equivalent.

(a) (K, τ) is distal.

(b) E(K, τ) is a group.

Furstenberg’s structure theorem now tells that any minimal distal system can be
rebuilt from a trivial system via “structured extensions”. To make this concept
precise, we introduce the following definition. Here, given a continuous surjection
q : K → L between compact spaces, we write Kl := q−1({l}) for the fiber over l ∈ L
and

K ×L K := {(x, y) ∈ K2 | q(x) = q(y)} =
⋃
l∈L

Kl ×Kl ⊆ K ×K

for the fiber product. We then “relativize” the notion of equicontinuous systems
from Definition 15.2.1 as follows.

Definition 15.2.13. An extension q : (K, τ) → (L, σ) is called “equicontinuous” if
for every ε > 0 there is δ > 0 such that the following condition holds.

• Whenever (x, y) ∈ K ×L K satisfies d(x, y) < δ, then d(τγ(x), τγ(y)) < ε for
all γ ∈ Γ.

Thus, we only have “no sensitive dependence on initial conditions” for points within
the same fiber of q.

Example 15.2.14. For a ∈ T consider the skew-rotation system (T2, τ) from Ex-
ample 15.2.11 and the rotation (T, la) from Example 6.2.2. Then the projection
pr1 : T2 → T, (x, y) 7→ x onto the first component defines an equicontinuous exten-
sion pr1 : (T2, τ)→ (T, la): If (x, y), (x, z) ∈ T2, we obtain for the Euclidean distance
on T2 that

∥τ(x, y)− τ(x, z)∥2 = ∥(ax, xy)− (ax, xz)∥2 = |xy − xz| = |x| · |y − z|
= |y − z| = ∥(x, y)− (x, z)∥2.

By induction, we then obtain ∥τn(x, y)− τn(x, z)∥2 = ∥(x, y)− (x, z)∥2 for all n ∈ Z
and x, y, z ∈ T. This implies that the extension is equicontinuous.

Remark 15.2.15. As in the case of systems, there is (at least for minimal systems)
an equivalent functional analytic definition of structured extensions similar to the
notion of “relative discrete spectrum” from Theorem 11.3.3, see [EK22b].

To formally state Furstenberg’s structure theorem we also need the concept of pro-
jective limits for topological dynamical systems.
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Definition 15.2.16. A directed system of topological dynamical systems
((Kα, τα)α∈A, (q

α2
α1
)α1≤α2) consists of

(1) a non-empty directed set A,

(2) a topological dynamical system (Kα, τα) for each α ∈ A, and

(3) an extension qα2
α1
: (Kα2 , τα2)→ (Kα1 , τα1) for all α1, α2 ∈ A with α1 ≤ α2,

such that

(i) qα3
α1

= qα2
α1
◦ qα3

α2
for all α1, α2, α3 ∈ A with α1 ≤ α2 ≤ α3.

(ii) qαα = idKα for each α ∈ A.

In this case, the topological dynamical system (K, τ) given by the closed subset

K :=

{
(xα)α∈A ∈

∏
α∈A

Kα | qα2
α1
(xα2) = xα1 for all α1 ≤ α2

}
of the product space

∏
α∈AKα equipped with the action given by τγ((xα)α∈A) :=

((τα)γ(xα))α∈A for (xα)α∈A ∈ K and γ ∈ Γ is the projective limit of ((Kα, τα))α∈A.

One can show that the projective limit of minimal systems is again minimal. The
following is now the precise formulation of the Furstenberg structure theorem for
minimal distal systems. We refer to [Aus88, Chapter 7] for more details and a
proof.

Theorem 15.2.17 (Furstenberg Structure Theorem). For a minimal topological
dynamical system (K, τ) the following assertions are equivalent.

(a) (K, τ) is distal.

(b) There is an ordinal β and a projective system ((Kα, τα)α≤β, (q
α2
α1
)α1≤α2) of min-

imal topologgical dynamical systems such that

(i) (Kβ, τβ) = (K, τ) and (K0, τ0) = ({1}, id),
(ii) qα+1 : (Kα+1, τα+1)→ (Kα, τα) is equicontinuous for each α < β, and

(iii) (Kα, τα) is the projective limit of ((Kα, τα)α′<α, (q
α2
α1
)α1≤α2<α′) for every

limit ordinal α ≤ β.

A nice proof of the structure theorem can be obtained by studying the Ellis semi-
group E(K, τ) of a minimal distal system (K, τ), which is a compact right topological
group by Theorem 15.2.12. In fact, Isaac Namioka proved a structure theorem for
compact right topological groups, and then applied this to E(K, τ) in order to obtain
the Furstenberg structure theorem (see [Nam72] and [BJM89, Appendix C]).

Remarks 15.2.18. (i) One can also prove (more complicated) structure theo-
rems for general minimal systems, see, e.g., [Vee77] and [dV93, Chapters V
and VI].
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(ii) As for systems one can use topological models (cf. Remark 15.2.9 above) to
establish connections between structured extensions in topological dynamics
and ergodic theory, see, e.g., [Ell87], [EJK23]. For Γ = Z Elon Lindenstrauss
proved a relation between topologically distal systems and measurably distal
systems (i.e., measure-preserving systems for which the weakly mixing exten-
sion in the Furstenberg–Zimmer tower can be omitted), see [Lin99]. Generally
speaking, there is a close connection between the topological and the measure-
theoretic structure theory.

Host–Kra Structure Theory. Finally, we mention that there is also a Host–
Kra structure theory for topological dynamical systems (see, e.g., [HKM10], [HK18,
Chapter 7 and Section 17.1]). However, we do not give the definition of the topo-
logical characteristic factors here (which again relies on certain constructions within
cubic systems). As in the ergodic theoretic framework, one then says that a minimal
system (K, τ) has order k ∈ N if it agrees with its kth characteristic factor. For
Γ = Z one can then, as in the measure-preserving case, represent a system of order
k as a projective limit of “k-step nilsystems”.

We conclude our lectures with a nice characterization of order k systems in terms of
the Ellis semigroup which has been established rather recently by Sebastián Donoso,
Jiahao Qiu and Jianjie Zhao (see [Don14] and [QZ22]). For a compact right topolog-
ical group E, set E0 := E and recursively define Ei+1 := [Ei, E] ⊆ E for i ∈ N0. If
Ek is the trivial group for k ∈ N0, then E is k-step topologically nilpotent.

Theorem 15.2.19. For a minimal topological dynamical system (K, τ) over Γ = Z
and k ∈ N the following assertions are equivalent.

(a) (K, τ) is of order k.

(b) E(K, τ) is a k-step topologically nilpotent compact right topological group.



Appendix A

Some Functional Analysis

In this appendix (which will be updated during the course) we treat basic concepts
and results from functional analysis and operator theory to the extent needed for
the lectures. Everyone who has already attended a course on functional analysis can
skip this appendix (or use it as a reminder). Introductions to functional analysis
(with the contents below and much more) can be found, e.g., in [Con85], [Rud87],
[Ped89], and [Haa14].

A.1 Banach Spaces and Bounded Linear Operators

In this first part of the appendix we recall the concepts of Banach and Hilbert
spaces, and bounded linear maps between them (see, e.g., [Con85, Paragraphs I.1,
III.1, and III.3]), [Rud87, Paragraphs 4.1 and 5.1], [Ped89, Sections 2.1, 2.2, and
3.1], and [Haa14, Section I.1, Chapters 2, and 5]).

Normed and Banach Spaces. A seminorm on a complex vector space E is a
map ∥ · ∥ : E → [0,∞) such that

(i) ∥f + g∥ ≤ ∥f∥+ ∥g∥ for all f, g ∈ E, and

(ii) ∥λf∥ = |λ| · ∥f∥ for λ ∈ C and f ∈ E.

A seminorm then automatically satisfies ∥0∥ = 0 for the zero vector 0 ∈ E. It is
a norm if addition ∥f∥ = 0 for f ∈ E already implies f = 0. Every norm ∥ · ∥
induces a metric via d(f, g) := ∥f − g∥ for f, g ∈ E. In particular, in we can speak
of topological notions like open sets, closed sets, the closure, the interior, convergent
sequences, continuity, etc. Note that addition and scalar multiplication as well as
the norm define continuous maps with respect to the above metric.

A complex vector space E equipped with a norm is called a normed space, and
a Banach space if it is complete as a metric space, i.e., every Cauchy sequence

229
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converges. Classical examples also featuring in this course are the following.

Examples. (i) The vector space Cd for d ∈ N with the Euclidean norm given
by ∥v∥2 := (

∑d
i=1 |vi|2)

1
2 for v = (v1, . . . , vd) ∈ Cd is a Banach space. In

particular, C equipped with the modulus | · | is a Banach space.

(ii) The space C(K) := {f : K → C | f continuous} for any compact space K
(e.g., K = [0, 1]) equipped with the supremum norm given by ∥f∥∞ :=
supx∈K |f(x)| for f ∈ C(K) is a Banach space.

(iii) For a probability spaceX, the space Lp(X) of equivalence classes of p-integrable
measurable functions f : X → C with the p-norm given by

∥f∥p :=
(∫

X

|f |p
) 1

p

for f ∈ Lp(X)

is a Banach space for each p ∈ [1,∞). Moreover, the space L∞(X) of equiv-
alence classes of bounded measurable functions f : X → C equipped with the
essential supremum norm defined by

∥f∥∞ = inf{c ≥ 0 | |f(x)| ≤ c for almost every x ∈ X} for f ∈ L∞(X)

is a Banach space. Since X is a probability space, Hölder’s inequality gives us
the inclusions

L∞(X) ⊆ Lq(X) ⊆ Lp(X) ⊆ L1(X)

with ∥f∥p ≤ ∥f∥q for f ∈ Lq(X) where 1 ≤ p ≤ q ≤ ∞.

Hilbert Spaces. In some of the examples above, the norm is defined by an inner
product. Recall that on a complex vector space H a map (·|·) : H × H → C is a
positive sesquilinear form if

(i) (f |f) ≥ 0 for every f ∈ H,

(ii) (α1f1 + α2f2|g) = α1(f1|g) + α2(f2|g) for all α1, α2 ∈ C and f1, f2, g ∈ H, and

(iii) (f |β1g1 + β2g2) = β1(f |g1) + β2(f |g2) for all β1, β2 ∈ C and f, g1, g2 ∈ H.

In this case, the Cauchy-Schwarz inquality

|(f |g)| ≤ (f |f)
1
2 · (g|g)

1
2

and the polarization identity

(f |g) = 1

4

4∑
k=1

ik(f + ikg|f + ikg)
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hold for all f, g ∈ H. The latter implies that (·|·) is self-adjoint, i.e., (g|f) = (f |g)
for all f, g ∈ H (see, e.g., [Ped89, Section 3.1]).

One can check that ∥f∥ :=
√

(f |f) for f ∈ H defines a seminorm on H. The
following version of the “Pythagorean theorem” for f, g ∈ H follows directly
from the definition:

∥f + g∥2 = ∥f∥2 + 2Re (f |g) + ∥g∥2.

A positive sesquilinear form (·|·) : H × H → C is an inner product if (f |f) = 0
for f ∈ H implies f = 0. In this case, the induced seminorm ∥ · ∥ is actually a
norm, and, as a consequence of the Cauchy-Schwarz inequality, the inner product is
continuous with respect to the induced metric. If the norm is complete, we call H
a Hilbert space.

Examples. (i) Cd for d ∈ N with the Euclidean inner product given by (v|w) :=∑d
i=1 viwi for v = (v1, . . . , vd), (w1, . . . , wd) ∈ Cd is a Hilbert space.

(ii) For a probability space X, the vector space L2(X) equipped with the inner
product defined by (f |g) :=

∫
X
f · g for f, g ∈ L2(X) for f, g ∈ L2(X) is a

Hilbert space.

Bounded Linear Operators. In contrast to finite-dimensional vector spaces,
linear maps between normed spaces need not be continuous. It turns out that a
linear map U : E → F between normed spaces E and F is continuous precisely
when it is a bounded linear operator in the sense that there is some c ≥ 0 with
∥Uf∥ ≤ c · ∥f∥ for all f ∈ E.

The space of all such bounded linear operators from E to F is denoted by L (E,F ).
Equipped with pointwise defined addition and scalar multiplication and the oper-
ator norm given by

∥U∥ := sup{∥Uf∥ | f ∈ E with ∥f∥ ≤ 1} for U ∈ L (E,F ),

the space L (E,F ) itself becomes a normed space. It is a Banach space if F is a
Banach space. The operator norm satisfies ∥Uf∥ ≤ ∥U∥ · ∥f∥ for all f ∈ E and
U ∈ L (E,F ). Moreover, it is submultiplicative: If D,E, F are normed spaces, U ∈
L (E,F ) and V ∈ L (D,E), then UV := U ◦V ∈ L (D,F ) with ∥UV ∥ ≤ ∥U∥·∥V ∥.
We abbreviate L (E) := L (E,E) and E ′ := L (E,C) for any normed space E. The
space E ′ is called the dual space of E.

Particularly nice bounded operators are the ones which actually preserve the norm:
A linear map U : E → F between normed spaces E and F is a linear isometry
if ∥Uf∥ = ∥f∥ for all f ∈ E. Notice that this automatically implies that U is an
injective map as it has a trivial kernel.
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If H and K are Hilbert spaces, then a linear isometry U : H → K automatically
satisfies (Uf |Ug) = (f |g) for all f, g ∈ H by the polarization identity. In this case, U
is called a unitary operator if U is also surjective (and then a bijection). We write
U (H) for the set of all unitary operators U : H → H on a Hilbert space H.

The following simple extension theorem (see, e.g., [Ped89, Proposition 2.1.11]) for
bounded linear operators is used in the first lecture.

Proposition A.1.1. Let E be a normed space and D ⊆ E a dense linear subspace.
Every bounded linear operator U ∈ L (D,F ) to a Banach space F has a unique
extension to a bounded linear operator U ∈ L (E,F ) with ∥U∥ = ∥U∥.
Note that, by continuity of the norm, the extension of a linear isometry is again a
linear isometry.
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A.2 Basic Hilbert Space Theory
The following are some basic concepts and tools from Hilbert space theory, see, e.g.,
[Con85, Chapter 1], [Rud87, Chapter 4], [Ped89, Sections 3.1 and 3.2], and [Haa14,
Chapters 1 and 8, and Section 12.2].

Given a Hilbert space H, two elements f, g ∈ H are called orthogonal (in symbols:
f ⊥ g) if (f |g) = 0. For orthogonal f, g ∈ H the Pythagorean theorem from above
becomes ∥f + g∥2 = ∥f∥2 + ∥g∥2. For a subset M ⊆ H we call

M⊥ := {f ∈M | f ⊥ g for every g ∈M}

the orthogonal complement of M . This is always a closed subspace of H. Two
subsets M,N ⊆ H are orthogonal if f ⊥ g = 0 for all f ∈ M and g ∈ N , i.e.,
M ⊆ N⊥.

The following geometric result is used in Chapter 3 (with x = 0) and is fundamental
in Hilbert space theory (see, e.g., [Con85, Theorems I.2.5 and I.2.6]. Recall here
that a subset C ⊆ E of a vector space E is convex if tf + (1 − t)g ∈ C for all
f, g ∈ C and t ∈ [0, 1].

Theorem A.2.1. Let C ⊆ H be a non-empty, closed, convex subset of a Hilbert
space H and x ∈ H.

(i) There is a unique y0 ∈ C with ∥y0 − x∥ = inf{∥y − x∥ | y ∈ C}.
(ii) If C ⊆ H is even a closed linear subspace, then y0 of (i) is the unique element

z ∈ C with x− z ∈ C⊥.

The following result makes use of Theorem A.2.1, see, e.g., [Ped89, Theorem 3.1.7].

Theorem A.2.2. Let M ⊆ H be a closed linear subspace of a Hilbert space H.
Then H = M ⊕M⊥ is a decomposition of H into closed and orthogonal subspaces
M and M⊥.

In the situation of Theorem A.2.2, the projection map PM : H → H induced by this
decomposition, i.e., the unique linear map sending elements x ∈ M to itself, and
elements x ∈M⊥ to 0, is called the orthogonal projection onto M .

By Theorem A.2.2 we obtain that for any subset M ⊆ H of a Hilbert space H, we
have the identity (M⊥)⊥ = linM (see [Ped89, Corollary 3.1.8]). Thus, the linear
hull lin M is dense in H precisely when M⊥ = {0}.
Another important consequence is the following famous representation theorem for
the dual of a Hilbert space, see, e.g., [Con85, Theorem I.3.4].

Theorem A.2.3 (Riesz–Fréchet). Let H be a Hilbert space. Then the map

H → H ′, g 7→ g
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where g(f) := (f |g) for all f, g ∈ H is a bijection. Moreover, ∥g∥ = ∥g∥ for every
g ∈ H.

The Riesz–Fréchet theorem has an interesting consequence for bounded linear op-
erators: If U ∈ L (H,K) for Hilbert spaces H and K, then for every y ∈ K the
map

y ◦ U : H → C, x 7→ (UX | Y )

is a bounded linear map by the Cauchy–Schwarz inequality, and hence there is a
unique vector z ∈ H with y ◦ U = z. We set U∗y := z, i.e., U∗y is characterized by
the identity (x|U∗y) = (UX | Y ) for all x ∈ H and y ∈ K. The map U∗ : K → H
is called the adjoint operator of U , and is itself a bounded linear operator with
∥U∗∥ = ∥U∥. Observe that (U∗)∗ = U . Moreover, if H,K,L are Hilbert spaces,
then (UV )∗ = V ∗U∗ holds for all U ∈ L (K,L) and V ∈ L (H,K).

One can check that a bounded linear operator U ∈ L (H,K) between Hilbert spaces
H and K is

(i) a linear isometry precisely when U∗U = IdH .

(ii) a unitary operator precisely when U∗U = IdH and UU∗ = IdK .

A bounded linear operator U ∈ L (H) on a Hilbert space H is self-adjoint if
U∗ = U . A self-adjoint operator P ∈ L (H) is an orthogonal projection if in
addition P 2 = P . For every closed subspace M ⊆ H the orthogonal projection PM
onto M from above is indeed an orthogonal projection in this sense. Conversely, if
P is an orthogonal projection, then the image M := PH is a closed linear subspace
and P = PM . See [Ped89, Section 3.2] for these and further assertions.

Finally, we will also need the concept of orthonormal bases in some of the lectures.
A subset E ⊆ H of a Hilbert space H is orthonormal if its elements are pairwise
orthogonal and ∥e∥ = 1 for every e ∈ E. An orthonormal subset E ⊆ H which is
maximal with respect to set inclusion, i.e., there is no strictly larger orthonormal
subset F ⊆ H, is called an orthonormal basis of H. An orthonormal subset
E ⊆ H is an orthonormal basis of H precisely when linE = H. An application of
Zorn’s lemma yields the following (see [Ped89, Proposition 3.1.12]):

Theorem A.2.4. Every orthonormal subset of a Hilbert space H is contained in an
orthonormal basis of H.

In particular, each Hilbert space has an orthonormal basis. This allows us to repre-
sent vectors in a Hilbert space via the following result, see, e.g., [Con85, Theorem
I.4.13]. Note here that the finite subsets Pfin(A) of any set A are directed by set
inclusion, and so we can use the notion of net convergence from Chapter 3.
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Theorem A.2.5 (Fourier Series/Parseval Identity). Let E ⊆ H be an orthonormal
basis of a Hilbert space H. Then

f =
∑
e∈E

(f |e)e := lim
F⊆E
finite

∑
e∈F

(f |e)e and

∥f∥2 =
∑
e∈E

|(f |e)|2 := lim
F⊆E
finite

∑
e∈F

|(f |e)|2 = sup
F⊆E
finite

∑
e∈F

|(f |e)|2

for every f ∈ H.

By extending an orthonormal subset to an orthonormal basis we obtain the following
corollary of Theorem A.2.5.

Corollary A.2.6 (Representation of Projections/Bessel Inequality). Let E ⊆ H be
an orthonormal subset of a Hilbert space H, M := linE its closed linear hull and
PM the orthogonal projection onto M . Then

PMf =
∑
e∈E

(f |e)f := lim
F⊆E
finite

∑
e∈F

(f |e)e and

∥PMf∥2 =
∑
e∈E

|(f |e)|2 := lim
F⊆E
finite

∑
e∈F

|(f |e)|2 = sup
F⊆E
finite

∑
e∈F

|(f |e)|2 ≤ ∥f∥2

for every f ∈ H.
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A.3 Spectral Projections
In this section, we summarize key results from the spectral theory of bounded self-
adjoint operators and the closely related Borel functional calculus. For brevity, we
will treat these results as a black box; proofs can be found in [Hal13, Chapter 8] for
example.

Let H ̸= {0} be a Hilbert space and T ∈ L (H) be a bounded self-adjoint operator.
For a real polynomial p(t) =

∑d
i=0 cit

i ∈ R[t], let p also denote its restriction as a
function to [−∥T∥, ∥T∥]. Define

p(T ) =
d∑
i=0

ciT
i.

Then p(T ) : H → H is again a bounded and self-adjoint operator. Now, consider
a compact interval [a, b] ⊆ [−∥T∥, ∥T∥], and let f = 1[a,b] denote its characteristic
function. By the Bolzano–Weierstraß theorem, there exists a sequence of polyno-
mials pn : [−∥T∥, ∥T∥] → R such that pn converges pointwise and boundedly to
f .

We define
f(T )h := lim

n→∞
pn(T )h for h ∈ H,

where this limit exists and is independent of the choice of the approximating se-
quence (pn)n∈N.

The operator f(T ) has the following properties:

(i) f(T ) is an orthogonal projection.

(ii) f(T ) ◦ T = T ◦ f(T ).
(iii) Let Hf be the range of f(T ). Then, for the restriction T |Hf

of T to Hf , we
have a idHf

≤ T |Hf
≤ b idHf

in the sense that a∥v∥2 ≤ (T |Hf
v | v) ≤ b∥v∥2 for

all v ∈ Hf .

We refer to f(T ) as a spectral projection of T .

Finally, by the continuity properties of the Borel functional calculus we have that

Th = lim
n→∞

(T1[−∥T∥,− 1
n
](T )h+ T1[ 1

n
,∥T∥](T )h)

for each f ∈ H.
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